Microstructure Evolution and Mechanical Properties of an Al-Cu-Mg Alloy at Elevated Temperature

Article Preview

Abstract:

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were utilized to study the microstructure and mechanical behavior of an Al-Cu-Mg alloy after tensile test at 125°C, 150°C, 175°C and 200 °C, respectively. The yield strength and ultimate tensile strength decreased with the increase of temperature, while the elongation increased firstly and then decreased. The S and S′ precipitate after tension at elevated temperatures. When the temperature was higher than 175°C, the precipitate coarsens rapidly. The alloys displayed a shear fracture features at elevated temperature. The larger S′ and S phase coarsened and dropped which forming crack in the grain boundaries and precipitate interfaces, resulting in the decrease of the elongation of the alloy.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1004-1005)

Pages:

148-153

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Cassada, J. Liu, J. Staley, Advanced Materials and Processes. 12 (2002) 27−29.

Google Scholar

[2] E.A. Stark, J.T. Staley, Progress in Aerospace Sciences. 32 (1996) 131−172.

Google Scholar

[3] J. Hirsch, K.F. Kahausen, L. Lohte, Mater Sci Forum. 396−402 (2002)1721−1730.

Google Scholar

[4] S. P. Ringer, T. Sakurai, I. J. Polnear, Acta Materialia. 45 (1997) 3731-3744.

Google Scholar

[5] S.C. Wang, M.J. Starink, N. Gao, Scripta Materialia. 54 (2006) 287−291.

Google Scholar

[6] S.P. Ringer, K. Hono. Materials Characterization. 44 (2000) 101-131.

Google Scholar

[7] I.N. Khan, M.J. Starink, Materials Science and Engineering A. 472 (2008)66−74.

Google Scholar

[8] L. Kovarik, S.A. Court, M.J. Mills, Acta Materiali. 56 (2008) 4804−4815.

Google Scholar

[9] S. Bdavis, Y. Li, L.E. Murr, D. Brownd, J.C. Mcclure, Scripta Materialia. 41 (1999) 809−815.

Google Scholar

[10] Y.J. Huang, Z.G. Chen, Z.Q. Zheng. Scripta Materialia. 64 (2011) 382−385.

Google Scholar

[11] L. Kovarik, S.A. Court, H.L. Fraser, M.J. Mills. Acta Materialia. 56 (2008) 4804-4815.

Google Scholar

[12] S. Muthu Kumaran. Materials Science and Engineering: A. 528 (2011) 4152-4158.

Google Scholar

[13] G. Sha, R.K.W. Marceau, X. Gao, B.C. Muddle, S.P. Ringer. Acta Materialia. 59 (2011) 1659-1670.

DOI: 10.1016/j.actamat.2010.11.033

Google Scholar

[14] Y.L. Zhao, Z.Q. Yang, Z. Zhang, G.Y. Su, X.L. Ma. Acta Materialia. 61 (2013) 1624-1638.

Google Scholar

[15] M. Weiss, A.S. Taylor, P.D. Hodgson, N. Stanford. Acta Materialia. 61(2013) 5278–5289.

Google Scholar

[16] T Kobayashi. Materials Science and Engineering A. 286 (2000) 333-341.

Google Scholar