Microstructure Evolution of Zn-Al Cladding Fabricated on AZ31 Magnesium Alloy

Article Preview

Abstract:

The surface of AZ31 magnesium substrate is coated by Zn-Al alloys using cast-penetrated cladding. The transverse section of alloy cladding is composed of cladding zone, diffusional zone, and bonding zone. The microstructure evolution, phase constitution, and chemical composition of the transition layer are studied. The experimental results exhibit cladding zone contained dendrite matrix and interdendritic eutectic structures. The plume eutectic structure and columnar eutectic structure are formed in diffusional zone and bonding zone, respectively. Zn and Al solid solutions gradually decrease and disappear owing to the diffusion of magnesium atom and the changes of magnesium element concentration. Mg7Zn3 phases are generated rapidly due to the interdiffusion of zinc and magnesium atoms rapidly in the diffusional zone and bonding zone. As Mg-Zn eutectic phases hinder the movement of Mg and Al atoms, the Mg-Al intermetallic compounds are eliminated completely. The microstructure is transformed into Mg solid solution and Mg7Zn3 eutectic structure to combine with AZ31 base metal.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1004-1005)

Pages:

154-157

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.Q. Sun, B. Lang, D.X. Sun and J.B. Li: Mater. Sci. Eng. A Vol. 460-461 (2007), pp.494-498.

Google Scholar

[2] Y.Y. Wang, G.Q. Luo, J. Zhang, Q. Shen and L.M. Zhang: Mater. Sci. Eng. A Vol. 559 (2013), pp.868-874.

Google Scholar

[3] L.D. Wang, K.Y. Zhang, W. Sun, T.T. Wu, H.R. He and G.C. Liu: Mater. Lett. Vol. 106 (2013), pp.111-114.

Google Scholar

[4] Y. Chen, Y. Song, S.X. Zhang, J.N. Li, H.J. Wang, C.L. Zhao and X.N. Zhang: Mater. Lett. Vol. 65 (2011), pp.2568-2571.

Google Scholar

[5] H. Altum and S. Sen: Mater. Des. Vol. 27 (2006), pp.1174-1179.

Google Scholar

[6] M. Parco, L.D. Zhao, J. Zwick, K. Bobzin and E. Lugscheider: Surf. Coat. Technol. Vol. 201 (2006), pp.3269-3274.

DOI: 10.1016/j.surfcoat.2006.06.047

Google Scholar

[7] Ch. Christoglou, N. Voudouris, G.N. Angelopoulos, M. Pant and W. Dahl: Surf. Coat. Technol. Vol. 184 (2004), pp.149-155.

Google Scholar

[8] B.J. Zheng, X.M. Chen and J.S. Lian: Opt. Laser Eng. Vol. 48 (2010), pp.526-532.

Google Scholar

[9] Y.L. Guo, C.S. Wang, M. Yao, H.B. Liu: Appl. Surf. Sci. Vol. 253 (2007), pp.5306-5311.

Google Scholar

[10] M. Hazra, A.K. Mondal, S. Kumar and C. Blawert: Surf. Coat. Technol. Vol. 203 (2009), pp.2292-2299.

Google Scholar

[11] A.H. Wang and T.M. Yue: Compos. Sci. Technol. Vol. 61 (2001), pp.1549-1554.

Google Scholar

[12] T.B. Massalski and Hiroaki Okamoto: Binary Alloy Phase Diagrams, second ed., ASM International, Materials Park, Ohio, USA (1990).

Google Scholar