The Theoretical Study of the Cinnabar-to-Rocksalt Phase Transitions of HgTe and CdTe under High Pressure

Article Preview

Abstract:

We performed the first-principle calculation to study the structures of cinnabar phase and the Cinnabar-to-rocksalt Phase transitions of HgTe and CdTe under high pressure. The calculated results show that for HgTe, the zincblende-to-cinnabar phase transition is under 2.2GPa, and the cinnabar-to-rocksalt phase transition is under 5.5 GPa; For CdTe, the two phase transitions occur under 4.0 GPa and 4.9 GPa, respectively, which well agree with the experimental results. The cinnabar-to-rocksalt phase transitions of most compounds, including HgTe and CdTe, except HgS are of first-order, and it is due to that their cinnabar phases are not chain structure as HgS and there are no relaxation process before the phase transition.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1004-1005)

Pages:

1608-1614

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. J. Nelemes and M. I. McMahon, in semiconductors and semimetals (Academic Press, New York, 1998), Vol. 54, Chap. 3, PP. 145-246.

Google Scholar

[2] R. J. Nelmes, M. I. McMahon, N. G. Wright, and D. R. Allan; J. Phys. Chem. Solids 56, (1995) 539.

Google Scholar

[3] R. J. Nelmes, M. I. McMahon, N. G. Wright, and D. R. Allan, Phys. Rev. Lett. 73, (1994) 1805.

Google Scholar

[4] M. I. McMahon and R. J. Nelmes; Phys. Rev. Lett. 78, (1997) 3697.

Google Scholar

[5] T. Huang and A. L. Ruoff; J. Appl. Phys. 54, (1983) 5459.

Google Scholar

[6] Tzuen-Luh Huang and Arthur L. Ruoff; Phys. Rev. B 31, (1985) 5976.

Google Scholar

[7] A. Werner, H. D. Hochheimer, K. Strossner, and A. Jayaraman; Phys. Rev. B 28, (1983) 3330.

Google Scholar

[8] R. J. Nelmes, M. I. McMahon, N. G. Wright, D. R. Allan, H. Liu, and J. S. Loveday; J. Phys. Chem. Solids, 56, (1995) 545.

Google Scholar

[9] T. Huang and A. L. Ruoff; Phys. Rev. B 27, (1983) 7811.

Google Scholar

[10] A. Ohtani, T. Seike, M. Motobayashi and A. Onodera; J. Phys. Chem. Solids, 43, (1982) 627.

Google Scholar

[11] A. San-Miguel, N.G. Wright, M. I. McMahon, and R. J. Nelmes; Phys. Rev. B 51, (1995) 8731.

Google Scholar

[12] N. G. Wright, M. I. McMahon, R. J. Nelmes, and A. San-Miguel; Phys. Rev. B 48, (1993) 13111.

Google Scholar

[13] A. San-Miguel, A. Polian and J. P. Itie; J. Phys. Chem. Solids 56, (1995) 555.

Google Scholar

[14] M. I. McMahon, R. J. Nelmes, N. G. Wright, and D. R. Allan; Phys. Rev. B 48, (1993) 16246.

Google Scholar

[15] R. J. Nelmes, M. I. McMahon, N. G. Wright, and D. R. Allan; Phys. Rev. B 48, (1993) 1314.

Google Scholar

[16] J. Pellicer-Porres, A. Segura, V. Muñoz, J. Zúñiga, J. P. Itié and A. Polian; Phys. Rev. B 65, (2001) 012109.

DOI: 10.1103/physrevb.65.012109

Google Scholar

[17] Shao-Rui Sun and Yu-Hui Dong, Phys. Rev. B 72, (2005) 174101.

Google Scholar

[18] P. Hohenberg and W. Kohn; Phys. Rev. 136, (1964) B864.

Google Scholar

[19] W. Kohn and L. J. Sham; Phys. Rev. 140, (1965) A1133.

Google Scholar

[20] Karlheinz Schwarz and Peter Blaha; Computational Materials Science 28, (2003) 259.

Google Scholar

[21] K. Schwarz, P. Blaha and G. K. H. Madsen; Comp. Phys. Commun. 147, (2002) 71.

Google Scholar

[22] Peter Blaha, Karlheinz Schwarz, Georg Madsen, Dieter Kvasnicka, and Joachim Luitz, WIEN2k (user's guide), Vienna University of Technology, (2001).

Google Scholar

[23] John P. Perdew, Kieron Burke, and Matthias Ernzerhof, Phys. Rev. Lett. 77, (1996) 3865.

Google Scholar

[24] F. D. Murnaghan, Proc. Natl. Acad. Sci. U.S.A. 30, (1944) 244.

Google Scholar

[25] J. A. Kafalas, H. C. Gatos, M. C. Lavine and M. D. Banus; J. Phys. Chem. Solids, 23, (1962) 1541.

Google Scholar

[26] P J Ford, A J Miller, G A Saunders, Y K Yogurtcu, J K Furdyna and M Jaczynski; J. Phys. C 15, (1982) 657.

Google Scholar

[27] P.W. Bridgman, Proc. Am. Acad. Art Sci. 74, (1940) 24.

Google Scholar

[28] M. I. McMahon, R. J. Nelmes, H. Liu, and S. A. Belmonte; Phys. Rev. Lett. 77, (1996) 1781.

Google Scholar

[29] A. San-Miguel, N.G. Wright, M. I. McMahon, and R. J. Nelmes; Phys. Rev. B 51, (1995) 8731.

Google Scholar

[30] Semiconductors, Physics of Group IV Elements and III-V Compounds, edited by K. H. Hellwege and O. Madelung, Landolt-Bornstein, New Series, Group III, Vol. 17 (Springer-Verlag-Berlin, 1982); Semiconductors, Instrinsic Properties of Group IV Elements and III-V, II-VI, and I-VII Compounds, edited by K. H. Hellwege and O. Madelung, Landolt-Bornstein, New Series, Group III, Vol. 22(Springer-Verlag-Berlin, 1982).

DOI: 10.1002/crat.2170231029

Google Scholar

[31] K. Strossner, S. Ves, W. Dieterich, W. Gebhardt, and M. Cardona, Solid State Commun. 56, (1985) 563.

Google Scholar

[32] N. B. Owen, P. L. Smith, J. E. Martin and A. J. Wright; J. Phys. Chem. Solids, 24, (1963) 1519.

Google Scholar

[33] I. Y. Borg and D. K. Smith, Jr.; J. Phys. Chem. Solids, 28, (1967) 49.

Google Scholar