Synthesis, Characterization and Thermooxidative Properties of Hybrid Block Poly(silane-b-arylacetylene)

Article Preview

Abstract:

Organic-inorganic hybrid block Poly (silane-b-arylacetylene) (PSbA) have been synthesized through condensation polymerization between chloro-terminated polysilane and diethynylbenzene Grignard reagent, and chloro-terminated polysilane was synthesized through condensation polymerization of dichloromethylvinylsilane in the presence of Mg metal and Lewis acid (ZnCl2, LiCl). The structures of PSbAs were characterized by FTIR, 1H, 13C, 29Si NMR, and GPC. The PSbAs are orange viscous liquid and can be soluble in common organic solvents at room temperature. The thermal cure behavior of PSbAs was determined by DSC, and the thermal and oxidative stability of the cured PSbAs were investigated using TGA. The results showed that the cured PSbAs exhibit high thermal and thermooxidative stability. The degradation temperatures at 5% weight loss for the cured PSbAs are 470-533°C under N2 and 378-456°C under air, and the residue yields at 1000°C are 77.9-82.8% under N2 and 40.4-50.5% under air.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1004-1005)

Pages:

527-532

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.G. Tong, S.X. Bai, H. Zhang, Y.C. Ye: Materials Sci. and Technol. 28 (2012), 1505-1512.

Google Scholar

[2] Q. Shi, . Xiao: Springer Ser. Solid-State Sci. 14 (2012), 26-34.

Google Scholar

[3] Y.Y. Cui, A.J. Li, B. Li, X. Ma, R.C. Bai, W.G. Zhang, M.S. Ren, J.L. Sun: J. the Eur. Ceram. Soc. 34 (2014), 171-177.

Google Scholar

[4] K. Sato, A. Tezuka, O. Funayama, T. Isoda, Y. Terada, S. Kato, M. Iwata: Compos. Sci. Technol. 59 (1999), 853-859.

Google Scholar

[5] X. Zhou, D.M. Zhu, Q. Xie, F. Luo, W.C. Zhou: Ceram. Int. 38 (2012), 2467-2473.

Google Scholar

[6] F. Lenz, W. Krenkel: J. Korean Ceram. Soc. 49 (2012), 287-294.

Google Scholar

[7] Y.G. Tong, S.X. Bai, H. Zhang, K. Chen: Ceram. Int. 38 (2012), 3301-3307.

Google Scholar

[8] L. Matejka, M. Janata, J. Plestil, A. Zhigunov, M. Slouf: Polymer. 55 (2014), 126-136.

Google Scholar

[9] P. Musto, M. Abbate, M. Pannico, G. Scarinzi, G. Ragosta: Polymer. 53 (2012), 5016-5036.

DOI: 10.1016/j.polymer.2012.08.063

Google Scholar

[10] Y. Deng, J. Bernard, P. Alcouffe, J. Galy, L. Dai, J.F. Gerard: Polymer Chemistry. 49 (2011), 4343-4352.

Google Scholar

[11] S. Kashimura, Y. Tane, M. Ishifune, Y. Murai, S. Hashimoto, T. Nakai, R. Hirose, H. Murase: Tetrahedron Lett. 49 (2008), 269-271.

DOI: 10.1016/j.tetlet.2007.11.088

Google Scholar

[12] M. Itoh, K. Inoue, K. Iwata, M. Mitsuzuka, T. Kakigano: Macromolecules. 30 (1997) , 694-701.

DOI: 10.1021/ma961081f

Google Scholar

[13] D. Bratton, J.H. Simon, G.J. Richard, K.C.W. William: J. Organomet. Chem. 685 (2003) , 60-64.

Google Scholar

[14] J.M. Gao, H.M. Qi, J. Zhang, F.R. Huang, L. Du: New J. Chem. 36(2008), 45-47.

Google Scholar