Li4Mn5O12 Lithium Ion Sieve Preparation and Adsorption Properties

Article Preview

Abstract:

Polystyrene microspheres with 120nm diameter were synthesized by emulsion polymerization and three-dimensionally ordered colloidal crystal templates were obtained by centrifugal sedimentation.Three dimensionally ordered nanopore (3DON) manganese oxide lithium ion-sieve was prepared after filtration, two heated roasting and acid modified by using precursor solution filling the colloidal crystal templates, which was prepared by Lithium salt, manganese salt and citric acid. SEM, XRD, and saturated exchange capacity test were used to characterize the roasting condition, appearance, structure, and ion exchange performance of the oxide. The results showed that, the optimum roasting condition of preparing lithium ion-sieve precursors were found as follows: heating rate at 2°C/min, 300 °C roasting 4h and 800 °C roasting 8h, The 3DON Li4Mn5O12 lithium ion sieve precursor has the shape of three-dimensional cross-linked connected into the network structure. Li4Mn5O12 was regularly arranged and the hole wall was integrity,average pore size of approximately 90nm.3DON Li4Mn5O12 showed good stability for acid and the retrofit of lithium ion-sieve showed a high selectivity for Li+. The saturated exchange capacity of Li+ is 51.98mgLi+/g.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1004-1005)

Pages:

670-674

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Hamzaoui A. H, M'nif A, Hammi H, et al. Contribution to the lithium recovery from brine [J]. Desalination, 2003, 158 (1/3): 221−224.

DOI: 10.1016/s0011-9164(03)00455-7

Google Scholar

[2] Panero S, Ciffa F, D'Epifano A, et al. New Concepts for the development of lithium and proton conducting membranes [J]. Electrochimica Acta, 2003, 48(14/16): 2009−(2014).

DOI: 10.1016/s0013-4686(03)00179-8

Google Scholar

[3] Jannik J, Maier J. Nanocrystallinity. Effects in lithium battery materials. Aspects of nano-ionics. Part IV [J]. Physical Chemistry Chemical Physics, 2003, 5(2/3): 5215−5220.

DOI: 10.1002/chin.200404239

Google Scholar

[4] Im, D.; Manthiram, A. Solid State Ionics, 2003, 159: 249−255.

Google Scholar

[5] Fan, M. S.; Lei, X. L.; Wu, N. N.; Qi, L. Acta Phys. -Chim. Sin., 2007, 23: 36 . (In Chinese).

Google Scholar

[6] Tsuchiya S. , Nakatani Y. , Ibrahim R. , Ogawa S. . J. Am. Chem. Soc. [ J ], 2002 , 124 ( 18 ): 4936 − 4937.

Google Scholar

[7] Navarrete - Casas R., Navarrete – Guijosa A. , Valenzuela-Calahorro C. , Lopez - Gonzatlez J. D. , Garcaa – Rodriguez A. . J. Colloid Interf. Sci . [ J ], 2007, 306 ( 2 ) : 345-353.

DOI: 10.1016/j.jcis.2006.10.002

Google Scholar

[8] Chung K. S. B. , Cho K. Y. J. Memb. Sci. [J], 2008, 325(2): 503−508.

Google Scholar

[9] Chitrakar R, Kanoh H, Miyai Y, et al. A new type of manganese oxide(MnO2·0. 5H2O) derived from Li1. 6Mn1. 6 O4 a nd its lithium ion–sieve properties[J]. Chemistry of Materials, 2000, 12(10): 3152−3157.

DOI: 10.1002/chin.200104021

Google Scholar

[10] ZHANG Yong –cai, WANG, Hao, Wang Bo, et al. Low temperature synthesis of nanocrystalline Li4Mn5O12 by a hydrothermal method materials [J]. Research Bulletin, 2002, 37(8): 1411–1417. (In Chinese).

DOI: 10.1016/s0025-5408(02)00796-1

Google Scholar

[11] LIU Zhan –qiang, WANG wen –lou, LIU Xian-ming, et al. Synthesis of nanostructured spinel LiMnO by hydrothermal method at 70˚C [J]. Inorganic Chemistry Communications, 2004, 7(2): 308–310. (In Chinese).

DOI: 10.1016/j.inoche.2003.11.029

Google Scholar

[12] Myung S T. Komaba S, Kumagai N. Hydrothermal synthesis and electrochemical behavior of orthorhombic LiMnO2 [J]. Electrochimica Acta 2002, 47(20): 3287–3295.

DOI: 10.1016/s0013-4686(02)00248-7

Google Scholar

[13] Aldon, L.; Kubiak, P.; Womes, M.; Jumas, J. C. ; Olivier-Fourcade, J. ; Tirado, J. L.; Corredor, J. I. Chem. Mater., 2004, 16 (26): 5721–5725.

DOI: 10.1021/cm0488837

Google Scholar

[14] Liu, D. Q.; Yu, J.; Sun, Y. H.; He, Z. Z.; Liu, X. Q. Chin. J. Inorg. Chem., 2007, 1(23): 41–45. (In Chinese).

Google Scholar

[15] Kenta, O.; Yoshitaka, M.; Jitsuo, S. Langmuir., 1991, 7: 1167–1171.

Google Scholar

[16] Markus, A.; Wolfgang, B. Macromolecules., 1991, 24: 6636–6643.

Google Scholar

[17] Huang, Z. B.; Gao, J. N.; Wang, J.; Tang, F. Q.; Yuan, C. W. Acta Phys. -Chim. in., 2004, 20(6): 651–655. (In Chinese).

Google Scholar

[18] Yang, L. X.; Cheng, L. H. Synthesis of 1-diester-3-alkylimidazolium ionic liquids: China, CN 101342479.A. [P] 2008-10-03. (In Chinese).

Google Scholar

[19] Lu, H. W.; Zhou, Y. N.; Zeng, W.; Li, Y. S; Bo, Z. W. Chin. J. Inorg. Chem., 2006, 10(22): 1802–1806. (In Chinese).

Google Scholar

[20] Jing, Z. Y.; Xu, C. C.; Yuan, J. S. 2005, 24(12): 1336–1341. (In Chinese).

Google Scholar

[21] Dong, D. Q. Ph. D. Dissertation. Tianjin: Tianjin University, 2006. (In Chinese).

Google Scholar