[1]
L. Qu andR. Sun: A synergetic approach to genetic algorithms for solving traveling salesman problem. Information Sciences Vol. 117 (3–4), 267–283 (1999).
DOI: 10.1016/s0020-0255(99)00026-2
Google Scholar
[2]
K-M. Chiu andJ-S. Liu: Robot Routing Using Clustering-Based Parallel Genetic Algorithm with Migration, in: IEEE Workshop on Merging Fields of Computational Intelligence and Sensor Technology (CompSens), p.42–49. (2011).
DOI: 10.1109/mfcist.2011.5949511
Google Scholar
[3]
S. Liu andY. Cheng: The Design and Implementation of MPI Master-Slave Parallel Genetic Algorithm, in: Proceedings of International Conference on Education Technology and Computer, Singapore (2012).
Google Scholar
[4]
H. Muhlenbein, M. Schomisch andJ. Born: The Parallel Genetic Algorithm as Function Optimizer. In: Proceedings of The Fourth International Conference on Genetic Algorithms, pp.270-278, University of California, San diego (1991).
Google Scholar
[5]
J-J. Zhang, W-J. Liu and G-Y. Liu: Parallel Genetic Algorithm Based on the MPI Environment. TelkomnikaVol. 10 (7), 1708–1715 (2012).
Google Scholar
[6]
R.J. Kuo Y.J. Syu, Z-Y. Chen andF.C. Tien: Integration of particle swarm optimization and genetic algorithm for dynamic clustering. Information Sciences Vol. 195, 124–140 (2012).
DOI: 10.1016/j.ins.2012.01.021
Google Scholar
[7]
Y. Sun, Y. Gu, Y. andH. Xiong: Function Optimization Based on Quantum Genetic Algorithm, in: International Journal of Computer Science Issues Vol. 10 (1) (2), p.1694–0784 (2013).
Google Scholar
[8]
D.H. Kim, A. Abraham andJ.H. Cho: A hybrid genetic algorithm and bacterial foraging approach for global optimization. Information Sciences Vol. 177 (18), 3918–3937 (2007).
DOI: 10.1016/j.ins.2007.04.002
Google Scholar
[9]
Q. Yuan,F. Qian andW. Du: A hybrid genetic algorithm with the Baldwin effect. Information Sciences Vol. 180 (5), 640–652 (2010).
DOI: 10.1016/j.ins.2009.11.015
Google Scholar
[10]
G. Garai andB.B. Chaudhurii: A novel hybrid genetic algorithm with Tabu search for optimizing multi-dimensional functions and point pattern recognition. Information Sciences Vol. 221, 28–48 (2013).
DOI: 10.1016/j.ins.2012.09.012
Google Scholar
[11]
C-H. Lin: A rough penalty genetic algorithm for constrained optimization. Information Sciences Vol. 241, 119–137 (2013).
DOI: 10.1016/j.ins.2013.04.001
Google Scholar
[12]
O.A. Abdul-Rahman, M. Munetomo andK. Akama: An adaptive parameter binary-real coded genetic algorithm for constraint optimization problems: Performance analysis and estimation of optimal control parameters. Information Sciences Vol. 233, 54–86 (2013).
DOI: 10.1016/j.ins.2013.01.005
Google Scholar
[13]
R.J. Koshel: Enhancement of the downhill simplex method of optimization, in: Proceedings of International Optical Design Conference (2002).
DOI: 10.1364/iodc.2002.ituc2
Google Scholar