[1]
C. O Ng and C. C. Mei, Roll waves on a layer of fluid mud modelled as a power law fluid, Journal of Fluid Mechanics, vol. 263, pp.151-184, (1994).
DOI: 10.1017/s0022112094004064
Google Scholar
[2]
N. J. Balmforth, C. Mandre, Dynamics of roll waves, Journal of Fluid Mechanics, Cambridge, v. 514, pp.1-33, (2004).
DOI: 10.1017/s0022112004009930
Google Scholar
[3]
G. F. Maciel; F. O. Ferreira and G. H. Fiorot, Control of instabilities in non-Newtonian free surface fluid flows, J. of the Braz. Soc. of Mech. Sci. & Eng., Rio de Janeiro, vol. 35, no. 3, pp.217-229, (2013).
DOI: 10.1007/s40430-013-0025-y
Google Scholar
[4]
R. F. Dressler, Mathematical solution of the problem of roll waves in inclined open channels, Communications on Pure and Applied Mathematics, New York, vol. 2, pp.149-194, (1949).
DOI: 10.1002/cpa.3160020203
Google Scholar
[5]
J. P. Pascal, Instability of power-law fluid flow down a porous incline, Journal of Non Newtonian Fluid Mechanics, vol. 133, no. 2-3, pp.109-120, (2006).
DOI: 10.1016/j.jnnfm.2005.11.007
Google Scholar
[6]
C. D. Cristo, M. Iervolino and A. Vacca, On the applicability of minimum channel length criterion for roll-waves in mud-flows, J. Hydrol. Hydromech, vol. 61, no. 4, pp.286-292, (2013).
DOI: 10.2478/johh-2013-0036
Google Scholar
[7]
F. O. Ferreira, Estabilidade e controle dinâmico de roll waves, Ph.D. thesis, Faculdade de Engenharia, Universidade Estadual Paulista, UNESP, Ilha Solteira-SP, Brazil, (2013).
DOI: 10.21475/ajcs.18.12.10.pne1394
Google Scholar
[8]
P. Huerre and P. A. Monkewitz, Local and global instabilities in spatially developing flows, Annual Review of Fluid Mechanics, vol. 22, Annual Reviews, California, pp.473-537, (1990).
DOI: 10.1146/annurev.fl.22.010190.002353
Google Scholar
[9]
R. J. Briggs, Electron-stream interaction with plasmas, [S. l. ]: MIT Press, 1964, 183 p.
Google Scholar
[10]
Di Cristo, C. and Vacca, A, On the convective nature of roll waves instability, Journal Applied Mathematics, vol. 3, pp.259-271, (2005).
DOI: 10.1155/jam.2005.259
Google Scholar
[11]
FLUENT 6. 3. User's Guide, Lebanon: Fluent Incorporated, 2006. 2501 p.
Google Scholar
[12]
T. Ishihara, Y. Iwagaki and Y. Iwasa, Theory of the roll wave train in laminar water flow on a steep slope surface, " Transactions JSCE, Japan, 1954, vol. 19, pp.46-57.
DOI: 10.2208/jscej1949.1954.46
Google Scholar