The Current Status of Development and Applications of Wave-Heated Discharge Plasma Sources

Article Preview

Abstract:

Wave-heated discharges are well known as high-efficiency methods to generate high-density plasma at low pressures. In this paper, three types of plasma sources based on different wave-heated discharge principles are introduced systematically. Electron cyclotron resonance plasma, helicon wave plasma, and surface wave plasma systems are promising to be the next generation of plasma sources to meet increasingly strict requirements in microelectronics industry due to their remarkable advantages over conventional plasma sources.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1006-1007)

Pages:

193-199

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.A. Lieberman and A.J. Lichtenberg: Principles of Plasma Discharges and Materials Processing (Second Edition, John Wiley & Sons, Inc Publication, USA 2005).

Google Scholar

[2] O.A. Popov: J. Vac. Sci. Technol. A, Vol. 7 (1989), p.894.

Google Scholar

[3] S. Shapoval, V. Borodin, V. Gorbunov and A. Veretennikov: ECR-plasma equipment application for nanotechnology. 2004 7th Int. Conf. on Solid-State and Integrated Circuits Technology Proceedings, Beijing, China, 18-21 Oct. (2004).

DOI: 10.1109/icsict.2004.1435071

Google Scholar

[4] S.M. Gorbatkin, L.A. Berry and J.B. Roberto: J. Vac. Sci. Technol. A, Vol. 8 (1990), p.2893.

Google Scholar

[5] R. Anton, Th. Wiegner, W. Naumann, M. Liebmann, Chr. Klein and Chr. Bradley: Rev. Sci. Instrum., Vol. 71 (2000), p.1177.

Google Scholar

[6] D. Kimura, Y. Kurisu, D. Nozaki, K. Yano, Y. Imai, S. Kumakura, F. Sato, Y. Kato and T. Iida: Rev. Sci. Instrum., Vol. 85 (2014), p. A2938.

Google Scholar

[7] F.C. Sze and J. Asmussen: J. Vac. Sci. Technol. A, Vol. 11 (1993), p.1289.

Google Scholar

[8] E. Camps, O. Olea, C. GutiérrezTapia, and M. Villagrán: Rev. Sci. Instrum., Vol. 66 (1995), p.3219.

Google Scholar

[9] S.M. Hwang, J.G. Yang, N.S. Yoon, J. Hong, B.C. Kim, K. -I. You and Hanbit Project Team: Rev. Sci. Instrum., Vol. 69 (1998), p.846.

Google Scholar

[10] C. Perret, A. Girard, H. Khodja and G. Melin: Phys. Plasmas, Vol. 6 (1999), p.3408.

Google Scholar

[11] G. Shirkov: Rev. Sci. Instrum., Vol. 71 (2000), p.850.

Google Scholar

[12] A. Heinen, M. Rüther, J. Ducrée, J. Leuker, J. Mrogenda, H. W. Ortjohann, E. Reckels, Ch. Vitt and H. J. Andrä: Rev. Sci. Instrum., Vol. 69 (1998), p.729.

DOI: 10.1063/1.1148667

Google Scholar

[13] A. Megía-Macías, O. D. Cortázar and A. Vizcaíno-de-Julián: Rev. Sci. Instrum., Vol. 85 (2014), p.033310.

Google Scholar

[14] C. Gaudin, L. Hay, J. M. Buzzi, M. Bacal and M. Lamoureux: Rev. Sci. Instrum., Vol. 69 (1998), p.890.

Google Scholar

[15] R.D. Tarey, N. Arora, A. Ganguli and R. Narayanan: Plasma production in large volume plasma system by compact electron cyclotron resonance sources. 2013 IEEE 40th Int. Conf. on Plasma Sciences, San Francisco, CA, USA, 16-21 Jun. (2013).

DOI: 10.1109/plasma.2013.6633474

Google Scholar

[16] A. Ganguli, R.D. Tarey, N. Arora, R. Narayanan and K. Akhtar: Development of compact electron cyclotron resonance plasma source. 2013 IEEE 40th Int. Conf. on Plasma Sciences, San Francisco, CA, USA, 16-21 Jun. (2013).

DOI: 10.1109/plasma.2013.6633473

Google Scholar

[17] S.J. Pearton, C.R. Abernathy and F. Ren: Appl. Phys. Lett., Vol. 64 (1994), p.2294.

Google Scholar

[18] N. Fujiwara, T. Maruyama and M. Yoneda: Profile Control of Poly-Si Etching in Electron-Cyclotron-Resonance Plasma. 16th Dry Process Symposium, Tokyo, Japan, 10-11 Nov. (1994).

Google Scholar

[19] F.J. Gómez, P. Prieto, E. Elizalde and J. Piqueras: Appl. Phys. Lett., Vol. 69 (1996), p.773.

Google Scholar

[20] W.M. Holber, J.S. Logan, H.J. Grabarz, J.T.C. Yeh, J.B.O. Caughman, A. Sugerman and F.E. Turene: J. Vac. Sci. Technol. A, Vol. 11 (1993), p.2903.

Google Scholar

[21] K.D. Vargheese and G.M. Rao: Rev. Sci. Instrum., Vol. 71 (2000), p.467.

Google Scholar

[22] S. Shinohara, T. Hada, T. Motomura, K. Tanaka, T. Tanikawa, K. Toki, Y. Tanaka and K.P. Shamrai: Phys. Plasmas, Vol. 16 (2009), p.057104.

DOI: 10.1063/1.3096787

Google Scholar

[23] M.U. Siddiqui and N. Hershkowitz: Phys. Plasmas, Vol. 21 (2014), p.020707.

Google Scholar

[24] T. Miao, H. Zhao, Z. Liu, Y. Shang, L. Sun, X. Zhang and H. Zhao: Rev. Sci. Instrum., Vol. 81 (2010), p. 02B105.

Google Scholar

[25] Yu.M. Aliev and M. Krämer: Phys. Plasmas, Vol. 21 (2014), p.013508.

Google Scholar

[26] K.K. Barada, P.K. Chattopadhyay, J. Ghosh, S. Kumar and Y.C. Saxena: Phys. Plasmas, Vol. 20 (2013), p.042119.

Google Scholar

[27] P.K. Chattopadhyay, K.K. Barada, J. Ghosh, D. Sharma and Y.C. Saxena: Study of density peaking in a diverging magnetic field helicon experiment. Int. Conf. on Complex Processes in Plasmas and Nonlinear Dynamical Systems, Gandhinagar, India, 6-9 Nov. (2012).

DOI: 10.1063/1.4865362

Google Scholar

[28] S. Shinohara, H. Nishida, T. Tanikawa, T. Hada, I. Funaki and K.P. Shamrai: IEEE Transactions on Plasma Science, Vol. 42 (2014), p.1245.

DOI: 10.1109/tps.2014.2313633

Google Scholar

[29] T. Ziemba, P. Euripides, J. Slough, R. Winglee, L. Giersch, J. Carscadden, T. Schnackenberg and S. Isley: Plasma Sources Sci. Technol., Vol. 15 (2006), p.517.

DOI: 10.1088/0963-0252/15/3/030

Google Scholar

[30] T. Lafleur: Phys. Plasmas, Vol. 21 (2014), p.043507.

Google Scholar

[31] O. Batishchev and K. Molvig: Modeling of a helicon plasma source. 28th IEEE Int. Conf. on Plasma Science and 13th IEEE Int. Pulsed Power Conf., Las Vegas, NV, USA, 17-22 Jun. (2001).

DOI: 10.1109/ppps.2001.1002007

Google Scholar

[32] C. Charles: J. Phys. D: Appl. Phys., Vol. 42 (2009), p.163001.

Google Scholar

[33] K. Takahashi, C. Charles, R. Boswell, W. Cox and R. Hatakeyama: Appl. Phys. Lett., Vol. 94 (2009), p.191503.

Google Scholar

[34] K. Takahashi, C. Charles, R. Boswell and A. Ando: J. Phys. D: Appl. Phys., Vol. 46 (2013), p.352001.

Google Scholar

[35] E. Ahedo and J. Navarro-Cavallé: Phys. Plasmas, Vol. 20 (2013), p.043512.

Google Scholar

[36] O.V. Batishchev: IEEE Transactions on Plasma Science, Vol. 37 (2009), p.1563.

Google Scholar

[37] N. Takahashi, H. Murata, H. Mitsubori, J. Sakuraba, T. Soga, Y. Aoki, T. Katoh, Y. Saitoh, K. Yamada, N. Ikenaga and N. Sakudo: Rev. Sci. Instrum., Vol. 85 (2014), p. 02C306.

DOI: 10.1063/1.4826675

Google Scholar

[38] L. Chen and Q. Yang: Proc. of SPIE, Vol. 8685 (2013), p. 86850H.

Google Scholar

[39] L. Chen, J. Zhao, R.V. Bravenec and M. Funk, U.S. Patent 8, 415, 884 B2 (2013).

Google Scholar

[40] Z. Chen, M. Liu, C. Lan, W. Chen, L. Tang, Z. Luo, B. Yan, J. Lu and X. Hu: Chin. Phys. B, Vol. 18 (2009), p.3484.

Google Scholar

[41] T. Yamauchi, E. Abdel-Fattah and H. Sugai: Japanese Journal of Applied Physics, Vol. 40 (2001), p. L1176.

Google Scholar

[42] J. Henriques, E. Tatarova, F. M. Dias and C. M. Ferreira: J. Appl. Phys., Vol. 103 (2008), p.103304.

Google Scholar

[43] C. Lan, X. Hu, W. Wang and M. Liu: Plasma Science and Technology, Vol. 12 (2010), p.129.

Google Scholar

[44] L. Xu, F. Terashita, H. Nonaka, A. Ogino, T. Nagata, Y. Koide, S. Nanko, I. Kurawaki and M. Nagatsu: J. Phys. D: Appl. Phys., Vol. 39 (2006), p.148.

DOI: 10.1088/0022-3727/39/1/022

Google Scholar

[45] M. Nagatsu, F. Terashita, H. Nonaka, L. Xu, T. Nagata and Y. Koide: Appl. Phys. Lett., Vol. 86 (2005), p.211502.

DOI: 10.1063/1.1931050

Google Scholar

[46] M. Goto, K. Azuma, T. Okamoto and Y. Nakata: Japanese Journal of Applied Physics, Vol. 42 (2003), p.7033.

Google Scholar