A New Classification Method for Stored Grain Insect Infestation Using KIII and SVM Based Electronic Nose

Article Preview

Abstract:

Insect infestation is a common problem for stored grain. In this paper, a novel pattern recognition approach combining an olfactory neural network entitled KIII with support vector machine (SVM) is proposed and used in conjunction with an electronic nose to generate recognition models. Using this approach, feature vectors are firstly processed by KIII model which stimulates information processing function of olfactory bulb, and then classified by SVM. Through optimization of SVM model parameters, the data are mapped into high dimension space and the stored wheat samples with different degrees of insect damage are distinguished successfully. The experimental results demonstrate that the proposed method can achieve up to 100% classification rate and significantly outperforms the conventional KIII-Minimum Euclidean Distance Classifier.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1006-1007)

Pages:

870-873

Citation:

Online since:

August 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Neethirajan, S., Karunakaran, C., Jayas, D.S., White, N.D.G.: Food Control Vol. 18(2007), pp.157-162.

Google Scholar

[2] Milner M.A.X., Lee M.R., Katz R.: Journal of Economic Entomology Vol. 43(1950), pp.933-935.

Google Scholar

[3] Karunakaran C., Jayas D.S., White N.D.G.: Cereal Chemistry Vol. 80 (2003), pp.553-557.

Google Scholar

[4] Karunakaran C., Jayas D.S., White N.D.G.: Journal of Stored Products Research Vol. 40 (2004), pp.507-516.

Google Scholar

[5] Rajendran S., Steve L. T.: Advances in Food and Nutrition Research Vol. 49 (2005), pp.163-232.

Google Scholar

[6] Fornal J., Jelinski T., Sadowska J., Grundas S., Nawrot J., Niewiada A., Warchalewski J.R., Blaszczak W.: Journal of Stored Products Research Vol. 43 (2007), pp.142-148.

DOI: 10.1016/j.jspr.2006.02.003

Google Scholar

[7] Haff R., Toyofuku N.: Sensing and Instrumentation for Food Quality and Safety Vol. 2 (2008), pp.262-273.

Google Scholar

[8] Persaud K.C., Dodd G.:. Nature Vol. 299 (1982), pp.352-355.

Google Scholar

[9] Martí M.P., Busto O., Guasch J., Boqué R.: TrAC Trends in Analytical Chemistry Vol. 24 (2005), pp.57-66.

DOI: 10.1016/j.trac.2004.09.006

Google Scholar

[10] Rock F., Barsan N., Weimar U.: Chemical Reviews Vol. 108 (2008), pp.705-725.

Google Scholar

[11] Stetter J.R., Findlay Jr M.W., Schroeder K.M., Yue C., Penrose W.R.: Analytica Chimica Acta Vol. 284 (1993), pp.1-11.

DOI: 10.1016/0003-2670(93)80001-2

Google Scholar

[12] Hu, J.: International Conference on Information Acquisition. Shandong, P.R. China (2006).

Google Scholar

[13] Zhang H., Wang J.: Journal of Stored Products Research Vol. 43 (2007), pp.489-495.

Google Scholar

[14] Chang H.J., Freeman W.J.: Int J of Bifurcation and Chaos Vol. 2 (1998), p.321–345.

Google Scholar

[15] Chang H.J., Freeman, W.J.: Int. J. Bifurcation and Chaos Vol. 11 (1998), p.2107–2123.

Google Scholar

[16] Freeman W.J.: Int J of Bifurcation and Chaos Vol. 10 (2001), p.2307–2322.

Google Scholar

[17] R. Kozma, W.J. Freeman: Int J Bifurcation Chaos Vol. 6 (2001), pp.1607-1629.

Google Scholar

[18] V. Vapnik: The Nature of Statistical Learning Theory (New York, Springer-Verlag, 1995).

Google Scholar