[1]
Yan Guo, Yao Wang, Fei Wei. Research Progress in Biomass Flash Pyrolysis Technology for liquids Production[J]. Chemical Industry and Engineering Progress, 2001, 20(8): 13-17.
Google Scholar
[2]
Jorgensen H, Kristensen JB and Felby C. Enzymatic conversion of lignocellulose into Fermentable sugars: challenges and opportunities. Biofuels Bio Prod Bio. 2007, l: 119-134.
DOI: 10.1002/bbb.4
Google Scholar
[3]
Lynd LR, Laser MS, et al. How biotech can transform biofuels. Nat Biotechnol. 2008, 26: 169-172.
Google Scholar
[4]
Mais U, Esteghlalian , Saddler J N, et al. Enhancing the enzymatic hydrolysis of cellulosic materials using simultaneous ball milling[J]. Applied biochemistry and biotechnology, 2002, 98: 815-832.
DOI: 10.1385/abab:98-100:1-9:815
Google Scholar
[5]
Taherzadeh , Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A Review[J]. Int J Mol Sci, 2008, 9(9): 1621-1651.
DOI: 10.3390/ijms9091621
Google Scholar
[6]
Hendriks A T W M, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass[J]. Bioresource Technology, 2009, 100(1): 10-18.
DOI: 10.1016/j.biortech.2008.05.027
Google Scholar
[7]
Karunanithy C, Muthukumarappan K, Julson J L. Influence of high shear bioreactor parameters on carbohydrate release from different biomasses[C]. American Society of Agricultural and Biological Engineers Annual International Meeting, (2008).
DOI: 10.13031/2013.24960
Google Scholar
[8]
Sridar V. Microwave radiation as a catalyst for chemical reactions[J]. Current Science, 1998, 74(5): 446-450.
Google Scholar
[9]
Zhu S D, Wu Y, Zhao Y, et al. Fed-batch simultaneous saccharification and fermentation of microwave/acid/alkali/H2O2 pretreated rice straw for production of ethanol[J]. Chemical Engineering Communications, 2006. 193(5): 639-648.
DOI: 10.1080/00986440500351966
Google Scholar
[10]
Yachmenev V, Condon B, Klasson T, et al. Acceleration of the enzymatic hydrolysis of corn stover and sugar cane bagasse celluloses by low intensity uniform ultrasound[J]. Journal of Biobased Materials and Bioenergy, 2009, 3(1): 25-31.
DOI: 10.1166/jbmb.2009.1002
Google Scholar
[11]
Sanchez O J, Cardona C A. Trends in biotechnological production of fuel ethanol from different feedstocks[J]. Bioresource Technology, 2008, 99: 5270-5295.
DOI: 10.1016/j.biortech.2007.11.013
Google Scholar
[12]
Berlin A, Balakshin M, Gilkes N, et al. Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations[J]. Journal of Biotechnology, 2006, 125: 198-209.
DOI: 10.1016/j.jbiotec.2006.02.021
Google Scholar
[13]
Kim JS, Lee Y. Cellulose hydrolysis under extremely low sulfuric acid and high temperature conditions[J]. Applied Biochemisty Biotechnology, 2001, 91(3): 331-340.
DOI: 10.1007/978-1-4612-0217-2_28
Google Scholar
[14]
Lewin M, Roldan L G. The effect of liquid anhydrous ammonia in the structure and morphology of cotton cellulose[J]. Journal of Polymer Science Part C: Polymer Symposium, 1971: 213-229.
DOI: 10.1002/polc.5070360115
Google Scholar
[15]
Pan X, Arato C, Gilkes N, et al. Biorefining of softwoods using ethanol organosolv pulping: preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products[J]. Biotechnology and Bioengineering. 2005, 90, 473-481.
DOI: 10.1002/bit.20453
Google Scholar
[16]
Shiqing Zhu, Lifeng Yan. Biomass clean energy[M]. BeiJing: Chemical Industry Press, 2002: 120-122.
Google Scholar
[17]
Andre Ferraz, et al. Biodegradation of pinus radiata softwood by white-and brown-rot fungi[J]. World Journal Of Microbiology&Biotechnology, 2001, 17(1): 31-34.
Google Scholar
[18]
Wan C, Li Y. Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production[J]. Bioresource Technology, 2010, 101(16); 6398-6403.
DOI: 10.1016/j.biortech.2010.03.070
Google Scholar
[19]
Qingyu Liu, Zhili Chen. The Condition of Degrating Corn Stalks by White Rot Fungi[J]. Journal of Agricultural Mechanization Research. 2009, 6(3): 110-112.
Google Scholar