Literature Review: Mechanical Properties of Hardened Silica Fume Concrete

Article Preview

Abstract:

Silica fume (SF) has become an environmental mineral admixture in the production of high-strength and high-performance concrete in modern concrete engineering. Through compacting all components and pozzolanic reaction, obvious mechanical enhancement of concrete is observed in the aspects of compressive strength tensile strength, elastic modulus as well as fracture toughness. Further more, durability improvement of silica fume concrete such as chloride-ion penetration resistance and chemical attack resistance are reported accordingly.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1008-1009)

Pages:

1357-1362

Citation:

Online since:

August 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] ACI116, Cement and Concrete Terminology [S]. America: ACI Committee 116, (2000).

Google Scholar

[2] ACI234, Guide for the Use of Silica Fume in Concrete [S]. America: ACI Committee 234, (2006).

Google Scholar

[3] Straight talk with Karen Scrivener on cements, CO2 and sustainable development [J]. American Ceramic Society Bulletin, Vol. 91, No. 5, (2012).

Google Scholar

[4] S.I. Pavlenko. Structure formation of slag ash concrete on the basis of high-calcium fly ash and silica fume [J]. Materials and Structures, Vol. 27, pp.401-407, (1994).

DOI: 10.1007/bf02473444

Google Scholar

[5] K. Perumal, R. Sundararajan. Effect of partial replacement of cement with silica fume on the strength and durability characteristics of high performance concrete [C]. 29 th Conference on Our World in Concrete & Structures, Singapore, 25-26 August (2004).

Google Scholar

[6] C.S. Poon, S.C. Kou, L. Lam. Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete[J]. Cons. & Bui. Mat. Vol. 26, pp.858-865, (2006).

DOI: 10.1016/j.conbuildmat.2005.07.001

Google Scholar

[7] Wu-man Zhang, Heng-jing Ba. Effect of silica fume addition and repeated loading on chloride diffusion coefficient of concrete [J]. Materials and Structures, RILEM (2012).

DOI: 10.1617/s11527-012-9963-6

Google Scholar

[8] Fatih Ozcan, Cengiz D. Atis, Okan Karahan. Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete [J]. Advances in Engineering Software, Vol, 49, pp.856-863, (2009).

DOI: 10.1016/j.advengsoft.2009.01.005

Google Scholar

[9] D. Rezaei-Ochbelagh, S. Azimkhani, H. Gasemzadeh Mosavinejad. Shielding and strength tests of silica fume concrete [J]. Annals of Nuclear Energy, Vol. 45, pp.150-154, (2012).

DOI: 10.1016/j.anucene.2012.02.006

Google Scholar

[10] S. Bhanja, B. Sengupta. Influence of silica fume on the tensile strength of concrete [J]. Cement and Concrete Research, Vol. 35, pp.743-747, (2005).

DOI: 10.1016/j.cemconres.2004.05.024

Google Scholar

[11] H. Toutanji, N. Delatte, S. Aggoun. Effect of supplementary cementitious materials on the compressive strength and durability of short-term cured concrete [J]. CCR, Vol. 34, pp.311-319, (2004).

DOI: 10.1016/j.cemconres.2003.08.017

Google Scholar

[12] M. Mazloom, A.A. Ramezanianpour, J.J. Brooks. Effect of silica fume on mechanical properties of high-strength concrete [J]. Cement and Concrete Research, Vol. 26, pp.347-357, (2004).

DOI: 10.1016/s0958-9465(03)00017-9

Google Scholar

[13] Ali Behnood. Effects of silica fume addition and water to cement ratio on the properties of high-strength concrete after exposure to high temperatures [J]. C&C Com. Vol. 30, pp.106-112, (2008).

DOI: 10.1016/j.cemconcomp.2007.06.003

Google Scholar

[14] J. Zelic, D. Rusic, R. Krstulovic. A mathematical model for prediction of compressive strength in cement-silica fume blends [J]. Cement and Concrete Research, Vol. 34, pp.2319-2328, (2004).

DOI: 10.1016/j.cemconres.2004.04.015

Google Scholar

[15] S. Bhanja, B. Sengupta. Investigation on the compressive strength of silica fume concrete using statistical methods [J]. Cement and Concrete Research, Vol. 32, pp.1391-1394, (2002).

DOI: 10.1016/s0008-8846(02)00787-1

Google Scholar

[16] Abdullah A. Almusallam, Hamoud Beshr. Effect of silica fume on the mechanical properties of low quality coarse aggregate concrete [J]. C&C Com. Vol. 26, pp.891-900, (2004).

DOI: 10.1016/j.cemconcomp.2003.09.003

Google Scholar

[17] K.O. Kjellsen, O.H. Wallevik. On the compressive strength development of high-performance concrete and paste-effect of silica fume [J]. Materials and Structures, Vol. 32, pp.63-69, (1909).

DOI: 10.1007/bf02480414

Google Scholar

[18] Mohammed Shamim Khan, Michael E. Ayers. Minimum length of curing of silica fume concrete.

Google Scholar

[19] C.D. Atis, F. Ozcan, A. Kilic. Influence of dry and wet curing conditions on compressive strength of silica fume concrete [J]. Building and Environment, Vol. 40, pp.1678-1683, (2005).

DOI: 10.1016/j.buildenv.2004.12.005

Google Scholar

[20] Arnon Bentur, Ariel Goldman. Curing effects, strength and physical properties of high strength silica fume concretes [J]. Journal of Materials in Civil Engineering, Vol. 1, No. 1, (1989).

DOI: 10.1061/(asce)0899-1561(1989)1:1(46)

Google Scholar

[21] N. Yazdani, M. Filsaime, S. Islam. Accelerated Curing of silica fume concrete [J]. Journal of Materials in Civil Engineering, Vol. 20, No. 3, (2008).

DOI: 10.1061/(asce)0899-1561(2008)20:8(521)

Google Scholar

[22] Heba A. Mohamed. Effect of fly ash and silica fume on compressive strength of self-compacting concrete under different curing conditions [J]. Ain Shams Engineering Journal, Vol. 2, pp.79-86, (2011).

DOI: 10.1016/j.asej.2011.06.001

Google Scholar

[23] Li Jiangyong, Tian Pei. Effect of slag and silica fume on mechanical properties of high strength concrete [J]. Cement and Concrete Research, Vol. 27, No. 6, pp.833-837, (1997).

DOI: 10.1016/s0008-8846(97)00076-8

Google Scholar

[24] Ozgur Eren, Tahir Celik. Effect of silica fume and steel fibers on some properties of high-strength concrete [J]. Construction and Building Material, Vol. 11, pp.373-382, (1997).

DOI: 10.1016/s0950-0618(97)00058-5

Google Scholar

[25] B.B. Sabir. High-strength condensed silica fume concrete [J]. Magazine of Concrete Research, Vol. 47, No. 172, pp.219-226, (1995).

DOI: 10.1680/macr.1995.47.172.219

Google Scholar

[26] Bertil Persson. Hydration and strength of high performance concrete [J]. Advanced Cement Based Materials, Vol. 3, pp.107-123, (1996).

DOI: 10.1016/s1065-7355(96)90043-7

Google Scholar

[27] H.A. Toutanji, L. Liu, T. El-Korchi. The role of silica fume in the direct tensile strength of cement-based materials [J]. Materials and Structures, Vol. 32, pp.203-209, April (1999).

DOI: 10.1007/bf02481516

Google Scholar

[28] V.T. Giner, S. Ivorra, F.J. Baeza. Silica fume admixture effect on the dynamic properties of concrete [J]. Construction and Building Materials, Vol. 25, pp.3272-3277, (2011).

DOI: 10.1016/j.conbuildmat.2011.03.014

Google Scholar

[29] M.J. Shannag. High strength concrete containing natural Pozzolan and silica fume [J]. Cement and Concrete Composite, Vol. 22, pp.399-406, (2000).

DOI: 10.1016/s0958-9465(00)00037-8

Google Scholar

[30] Wolsiefer, J. Untra-high strength, field placable concrete with silica fume admixture [J]. Concrete International, Vol. 6, No. 4, pp.25-31, (1984).

Google Scholar

[31] Mustafa Saridemir. Effect of silica fume and ground pumice on compressive and modulus of elasticity of high strength concrete [J]. Construction and Building Materials, Vol. 49, pp.484-489, (2013).

DOI: 10.1016/j.conbuildmat.2013.08.091

Google Scholar

[32] Mehmet Gesoglu, Erhan Guneyisi, Turan Ozturan. Effects of end conditions on compressive strength and static elastic modulus of very high strength concrete [J]. Cement and Concrete Research, Vol. 32, pp.1545-1550, (2002).

DOI: 10.1016/s0008-8846(02)00826-8

Google Scholar

[33] Building code requirements for structural concrete [S]. ACI Committee318, (2005).

Google Scholar

[34] ACI 363. State of the art report on high-strength concrete [S]. American Concrete Institute, (1992).

Google Scholar

[35] M. Kakizaki et al. Effect of mixing method on mechanical properties and pore structure of ultra high strength concrete[J]. ACI SP-132, CANMET, (1992).

Google Scholar

[36] Hasan Yildirim, Ozkan Sengul. Modulus of elasticity of substandard and normal concretes [J]. Construction and Building Materials, Vol. 25, pp.1645-1652, (2011).

DOI: 10.1016/j.conbuildmat.2010.10.009

Google Scholar

[37] Canan Tasdemir, Mehmet A. Tasdemir, Frank D. Lydon. Effects of silica fume and aggregate size on the brittleness of concrete [J]. Cement and Concrete Research, Vol. 26, No. 1, pp.63-68, (1996).

DOI: 10.1016/0008-8846(95)00180-8

Google Scholar

[38] L. Lam, Y.L. Wong, C.S. Poon. Effect of fly ash and silica fume on compressive and fracture behaviors of concrete [J]. Cement and Concrete Research, Vol. 28, No. 2, pp.271-283, (1998).

DOI: 10.1016/s0008-8846(97)00269-x

Google Scholar