[1]
ACI116, Cement and Concrete Terminology [S]. America: ACI Committee 116, (2000).
Google Scholar
[2]
ACI234, Guide for the Use of Silica Fume in Concrete [S]. America: ACI Committee 234, (2006).
Google Scholar
[3]
Straight talk with Karen Scrivener on cements, CO2 and sustainable development [J]. American Ceramic Society Bulletin, Vol. 91, No. 5, (2012).
Google Scholar
[4]
S.I. Pavlenko. Structure formation of slag ash concrete on the basis of high-calcium fly ash and silica fume [J]. Materials and Structures, Vol. 27, pp.401-407, (1994).
DOI: 10.1007/bf02473444
Google Scholar
[5]
K. Perumal, R. Sundararajan. Effect of partial replacement of cement with silica fume on the strength and durability characteristics of high performance concrete [C]. 29 th Conference on Our World in Concrete & Structures, Singapore, 25-26 August (2004).
Google Scholar
[6]
C.S. Poon, S.C. Kou, L. Lam. Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete[J]. Cons. & Bui. Mat. Vol. 26, pp.858-865, (2006).
DOI: 10.1016/j.conbuildmat.2005.07.001
Google Scholar
[7]
Wu-man Zhang, Heng-jing Ba. Effect of silica fume addition and repeated loading on chloride diffusion coefficient of concrete [J]. Materials and Structures, RILEM (2012).
DOI: 10.1617/s11527-012-9963-6
Google Scholar
[8]
Fatih Ozcan, Cengiz D. Atis, Okan Karahan. Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete [J]. Advances in Engineering Software, Vol, 49, pp.856-863, (2009).
DOI: 10.1016/j.advengsoft.2009.01.005
Google Scholar
[9]
D. Rezaei-Ochbelagh, S. Azimkhani, H. Gasemzadeh Mosavinejad. Shielding and strength tests of silica fume concrete [J]. Annals of Nuclear Energy, Vol. 45, pp.150-154, (2012).
DOI: 10.1016/j.anucene.2012.02.006
Google Scholar
[10]
S. Bhanja, B. Sengupta. Influence of silica fume on the tensile strength of concrete [J]. Cement and Concrete Research, Vol. 35, pp.743-747, (2005).
DOI: 10.1016/j.cemconres.2004.05.024
Google Scholar
[11]
H. Toutanji, N. Delatte, S. Aggoun. Effect of supplementary cementitious materials on the compressive strength and durability of short-term cured concrete [J]. CCR, Vol. 34, pp.311-319, (2004).
DOI: 10.1016/j.cemconres.2003.08.017
Google Scholar
[12]
M. Mazloom, A.A. Ramezanianpour, J.J. Brooks. Effect of silica fume on mechanical properties of high-strength concrete [J]. Cement and Concrete Research, Vol. 26, pp.347-357, (2004).
DOI: 10.1016/s0958-9465(03)00017-9
Google Scholar
[13]
Ali Behnood. Effects of silica fume addition and water to cement ratio on the properties of high-strength concrete after exposure to high temperatures [J]. C&C Com. Vol. 30, pp.106-112, (2008).
DOI: 10.1016/j.cemconcomp.2007.06.003
Google Scholar
[14]
J. Zelic, D. Rusic, R. Krstulovic. A mathematical model for prediction of compressive strength in cement-silica fume blends [J]. Cement and Concrete Research, Vol. 34, pp.2319-2328, (2004).
DOI: 10.1016/j.cemconres.2004.04.015
Google Scholar
[15]
S. Bhanja, B. Sengupta. Investigation on the compressive strength of silica fume concrete using statistical methods [J]. Cement and Concrete Research, Vol. 32, pp.1391-1394, (2002).
DOI: 10.1016/s0008-8846(02)00787-1
Google Scholar
[16]
Abdullah A. Almusallam, Hamoud Beshr. Effect of silica fume on the mechanical properties of low quality coarse aggregate concrete [J]. C&C Com. Vol. 26, pp.891-900, (2004).
DOI: 10.1016/j.cemconcomp.2003.09.003
Google Scholar
[17]
K.O. Kjellsen, O.H. Wallevik. On the compressive strength development of high-performance concrete and paste-effect of silica fume [J]. Materials and Structures, Vol. 32, pp.63-69, (1909).
DOI: 10.1007/bf02480414
Google Scholar
[18]
Mohammed Shamim Khan, Michael E. Ayers. Minimum length of curing of silica fume concrete.
Google Scholar
[19]
C.D. Atis, F. Ozcan, A. Kilic. Influence of dry and wet curing conditions on compressive strength of silica fume concrete [J]. Building and Environment, Vol. 40, pp.1678-1683, (2005).
DOI: 10.1016/j.buildenv.2004.12.005
Google Scholar
[20]
Arnon Bentur, Ariel Goldman. Curing effects, strength and physical properties of high strength silica fume concretes [J]. Journal of Materials in Civil Engineering, Vol. 1, No. 1, (1989).
DOI: 10.1061/(asce)0899-1561(1989)1:1(46)
Google Scholar
[21]
N. Yazdani, M. Filsaime, S. Islam. Accelerated Curing of silica fume concrete [J]. Journal of Materials in Civil Engineering, Vol. 20, No. 3, (2008).
DOI: 10.1061/(asce)0899-1561(2008)20:8(521)
Google Scholar
[22]
Heba A. Mohamed. Effect of fly ash and silica fume on compressive strength of self-compacting concrete under different curing conditions [J]. Ain Shams Engineering Journal, Vol. 2, pp.79-86, (2011).
DOI: 10.1016/j.asej.2011.06.001
Google Scholar
[23]
Li Jiangyong, Tian Pei. Effect of slag and silica fume on mechanical properties of high strength concrete [J]. Cement and Concrete Research, Vol. 27, No. 6, pp.833-837, (1997).
DOI: 10.1016/s0008-8846(97)00076-8
Google Scholar
[24]
Ozgur Eren, Tahir Celik. Effect of silica fume and steel fibers on some properties of high-strength concrete [J]. Construction and Building Material, Vol. 11, pp.373-382, (1997).
DOI: 10.1016/s0950-0618(97)00058-5
Google Scholar
[25]
B.B. Sabir. High-strength condensed silica fume concrete [J]. Magazine of Concrete Research, Vol. 47, No. 172, pp.219-226, (1995).
DOI: 10.1680/macr.1995.47.172.219
Google Scholar
[26]
Bertil Persson. Hydration and strength of high performance concrete [J]. Advanced Cement Based Materials, Vol. 3, pp.107-123, (1996).
DOI: 10.1016/s1065-7355(96)90043-7
Google Scholar
[27]
H.A. Toutanji, L. Liu, T. El-Korchi. The role of silica fume in the direct tensile strength of cement-based materials [J]. Materials and Structures, Vol. 32, pp.203-209, April (1999).
DOI: 10.1007/bf02481516
Google Scholar
[28]
V.T. Giner, S. Ivorra, F.J. Baeza. Silica fume admixture effect on the dynamic properties of concrete [J]. Construction and Building Materials, Vol. 25, pp.3272-3277, (2011).
DOI: 10.1016/j.conbuildmat.2011.03.014
Google Scholar
[29]
M.J. Shannag. High strength concrete containing natural Pozzolan and silica fume [J]. Cement and Concrete Composite, Vol. 22, pp.399-406, (2000).
DOI: 10.1016/s0958-9465(00)00037-8
Google Scholar
[30]
Wolsiefer, J. Untra-high strength, field placable concrete with silica fume admixture [J]. Concrete International, Vol. 6, No. 4, pp.25-31, (1984).
Google Scholar
[31]
Mustafa Saridemir. Effect of silica fume and ground pumice on compressive and modulus of elasticity of high strength concrete [J]. Construction and Building Materials, Vol. 49, pp.484-489, (2013).
DOI: 10.1016/j.conbuildmat.2013.08.091
Google Scholar
[32]
Mehmet Gesoglu, Erhan Guneyisi, Turan Ozturan. Effects of end conditions on compressive strength and static elastic modulus of very high strength concrete [J]. Cement and Concrete Research, Vol. 32, pp.1545-1550, (2002).
DOI: 10.1016/s0008-8846(02)00826-8
Google Scholar
[33]
Building code requirements for structural concrete [S]. ACI Committee318, (2005).
Google Scholar
[34]
ACI 363. State of the art report on high-strength concrete [S]. American Concrete Institute, (1992).
Google Scholar
[35]
M. Kakizaki et al. Effect of mixing method on mechanical properties and pore structure of ultra high strength concrete[J]. ACI SP-132, CANMET, (1992).
Google Scholar
[36]
Hasan Yildirim, Ozkan Sengul. Modulus of elasticity of substandard and normal concretes [J]. Construction and Building Materials, Vol. 25, pp.1645-1652, (2011).
DOI: 10.1016/j.conbuildmat.2010.10.009
Google Scholar
[37]
Canan Tasdemir, Mehmet A. Tasdemir, Frank D. Lydon. Effects of silica fume and aggregate size on the brittleness of concrete [J]. Cement and Concrete Research, Vol. 26, No. 1, pp.63-68, (1996).
DOI: 10.1016/0008-8846(95)00180-8
Google Scholar
[38]
L. Lam, Y.L. Wong, C.S. Poon. Effect of fly ash and silica fume on compressive and fracture behaviors of concrete [J]. Cement and Concrete Research, Vol. 28, No. 2, pp.271-283, (1998).
DOI: 10.1016/s0008-8846(97)00269-x
Google Scholar