Influence of a Combined Low Dosage Gas Hydrate Inhibitor on Methane Hydrate Surface

Article Preview

Abstract:

According to analysis of the gas hydrate cage and structure of the inhibitor and simulation of molecular dynamics, the interaction between GHI1 and hydrates was discussed. The structure analysis indicated the side group of PVP can insert into the open hydrate cage, and force the hydrate growing along the polymer chain, which results in a large space resistance and inhibits gas hydrate agglomerating. The results of MD simulation show GHI1 can damage the surface cage in hydrate lattice; the hydrogen and oxygen in GHI1 can form hydrogen bonds respectively with oxygen and hydrogen in hydrates, which makes the surface molecules of the cages unstable and distorts the cages; Synergist diethylene glycol ether increases strength and range of length of hydrogen bond.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1008-1009)

Pages:

300-306

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. D. Sloan: Clathrate Hydrate of Nature Gases (Marcel Dekker Inc, New York 1998).

Google Scholar

[2] E. G. Hammerschmidt: Ind. Eng. Chem. Vol. 26(1934), p.851.

Google Scholar

[3] M. A. Kelland, T. M. Svartaas, L. Dybvik. In: Proceedings of the SPE Offshore Europe Conference. edited by the society of petroleum engineers, Aberdeen(1995).

Google Scholar

[4] B. Kvamme. In: Proceedings of the Eleventh, ternational Offshore and Polar Engineering Conference, Norway: Stavanger, 2001: 17-22.

Google Scholar

[5] T. Y. Makogon, E. D. Sloan. In: Proceedings of 4th International Hydrate Conference, Keio University, Yokohama(2002).

Google Scholar

[6] C. Moon, P. C. Taylor and P. M. Rodger: J Am. Chem. Soc. Vol. 125(2003), p.4706.

Google Scholar

[7] M. T. Storr,P. C. Taylor,J. P. Monfort,P. M. Rodger: J. Am. Chem. Soc., Vol. 126(2004), p.1569.

Google Scholar

[8] B. Kvamme, T. Kuznetsova and K. Aasoldsen: J. Mol. Graphics Modell. Vol. 23(2005), p.524.

Google Scholar

[9] K. F. Yan, J. G. Mi and C. L. Zhong: ACTA CHIMICA SINICA. In Chinese, Vol. 64(2006), P. 223.

Google Scholar

[10] D. A. Go´mez-Gualdro´n,P. B. Balbuena: J. Phys. Chem. C, Vol. 111(2007), p.15554.

Google Scholar

[11] J. H. Yang, B. Tohidi: Chemical Engineering Science Vol. 66(2011), p.278.

Google Scholar

[12] C. P. Tang, J. W. Du, D. Q. Liang, et al : Journal of Xi'an Jiaotong University, In Chinese. Vol. 42(2008), p.333.

Google Scholar

[13] K. A. Udachin, C. I. Ratcliffe and J. A. Ripmeester. Journal of supramolecular chemisty, Vol. 2(2002), p.405.

Google Scholar

[14] M. T. Kirchner, R. Boese, W. E. Billups, L. R. Norman: J. Am. Chem. Soc. Vol. 126(2004), p.9407.

Google Scholar

[15] C. P. Tang, X. X. Dai, J. W. Du, et al. Science in China Series B: Chemistry, Vol. 53(2010), p.2622.

Google Scholar

[16] M. A. Kelland, T. M. Svartaas, J. Ovsthus, T. Namba: Ann. N. Y. Acad. Sci. Vol. 912(2000), p.281.

Google Scholar

[17] A. A. Chialvo, H. Mohammed and P. T. Cummings:J. Phys. Chem. B., Vol. 106(2002, p.442.

Google Scholar