Molecular Dynamics Study of Thermal Conduction in Carbon Dioxide Hydrates

Article Preview

Abstract:

Equilibrium molecular dynamics simulations that use the Green–Kubo method for sI CO2-hydrate systems from medium to full occupancy were performed to estimate the corresponding thermal conductivities at temperatures that range from 233.15K to 278.15K and pressures that range from 3MPa to 100MPa. Specific potential models for water and CO2 were adopted. The effects of guest occupancy ratios and outside thermobaric conditions on CO2 hydrate thermal conductivity were studied. The thermal mechanism was also analyzed. The thermal conductivities of hydrates of CH4, C2H6, N2, and O2 were estimated. The size ratio of guest diameter to cavity diameter provided an adequate basis for understanding the thermal conductivities of gas hydrates.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1008-1009)

Pages:

861-872

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Nishikawa, M. Morishita, M. Uchiyama, F. Yamaguchi, K. Ohtsubo, H. Kimuro and R. Hiraoka, Energy Convers. Manage. Vol. 33 (1992), p.651.

DOI: 10.1016/0196-8904(92)90068-8

Google Scholar

[2] R.B. Lamorena and W. Lee, Environ. Sci. Technol. Vol. 42 (2008), p.2753.

Google Scholar

[3] R.B. Lamorena and W. Lee, Environ. Sci. Technol. Vol. 43 (2008), p.5908.

Google Scholar

[4] M. A. Clarke, A. Majumdar and P. R. Bishnoi, J. Chem. Eng. Data. Vol. 49 (2004), p.1436.

Google Scholar

[5] B. Kvamme and T. Kuznetsova, Math. Comput. Model. Vol. 51 (2010), p.156.

Google Scholar

[6] A. C. Chow, E. E. Adams, P. H. Israelsson and C. Tsouris, Energy Proced. Vol. 1 (2009), p.4937.

Google Scholar

[7] M. J. Cogbill and G. P. Marsh, Energy Convers. Manage. Vol. 33 (1992), p.487.

Google Scholar

[8] D. Aaron and C. Tsouris, Sep. Sci. Technol. Vol. 40 (2005), p.321.

Google Scholar

[9] S. P. Kang and H. Lee, Environ. Sci. Technol. Vol. 34 (2000), p.4397.

Google Scholar

[10] N. Mayoufi, D. Dalmazzone, W. Furst, A. Delahaye and L. Fournaison, J. Chem. Eng. Data. Vol. 55 (2010) , p.1271.

Google Scholar

[11] K. M. Sabil, G. J. Witkamp and C. J. Peter, Fluid Phase Equilib. Vol. 284 (2009), p.38.

Google Scholar

[12] M. Ota, K. Morohashi, Y. Abe, M. Watanabe, R.L. Smith and H. Inomata, Energy Convers. Manage. Vol. 46 (2005), p.1680.

Google Scholar

[13] C.Y. Geng, H. Wen and H. Zhou, J. Phys. Chem. A. Vol. 113 (2009), p.5463.

Google Scholar

[14] B.A. Baldwina, J. Stevens, J.J. Howard, A. Graue, B. Kvamme, E. Aspenes, G. Ersland, J. Husebø and D.R. Zornes, Magn. Reson. Imaging. Vol. 27 (2009), p.720.

DOI: 10.1016/j.mri.2008.11.011

Google Scholar

[15] M. Ota, K. Morohashi, Y. Abe, M. Watanabe, R.L. Smith and J.H. Inomata, Energy Convers. Manage. Vol. 46 (2005), p.1680.

Google Scholar

[16] N.J. English, Mol. Phys. Vol. 106 (2008), p.1887.

Google Scholar

[17] E.J. Rosenbaum, N.J. English, J.K. Johnson, D.W. Shaw and R.P. Warzinski, J. Phys. Chem. B. Vol. 111(2007), p.13194.

Google Scholar

[18] H. Jiang, E. M. Myshakin, K. D. Jordan and R. P. Warzinski, J. Phys. Chem. B. Vol. 112(2008), p.10207.

Google Scholar

[19] R.G. Ross and P. Andersson, Can. J. Chem. Vol. 60(1982), p.881.

Google Scholar

[20] D.Z. Huang and S.S. Fan, J. Chem. Eng. Data. Vol. 49(2004), p.1479.

Google Scholar

[21] L.H. Wan, D.Q. Liang, N.Y. Wu and J. A. Guan, Sci. China Chem. Vol. 55(2012), p.167.

Google Scholar

[22] N.J. English and J.S. Tse, Phys. Rev. Lett. Vol. 103(2009), p.015901/1.

Google Scholar

[23] N.J. English and J.S. Tse, Energies. Vol. 3(2010), p. (1934).

Google Scholar

[24] G.S. Nolas, M. Beekman, J. Gryko, G.A. Lamberton, T.M. Tritt and P.F. McMillan, Appl. Phys. Lett. Vol. 82(2003), p.910.

DOI: 10.1063/1.1544640

Google Scholar

[25] N.J. English, J.S. Tse and D. Carey, Phys. Rev. B. Vol. 80(2009), p.134306/1.

Google Scholar

[26] N.J. English and J.S. Tse, Comput. Mat. Sci. Vol. 49(2010), p. S176.

Google Scholar

[27] R. Vogelsang and C. Hoheisel, Phys. Rev. A. Vol. 35(1987), p.3487.

Google Scholar

[28] D.C. Rapaport, The Art of Molecular Dynamics Simulation, 2nd edn. (Cambridge University Press, New York, 2004).

Google Scholar

[29] W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey and M.L. Klein, J. Chem. Phys. Vol. 9(1983), p.926.

Google Scholar

[30] J.G. Harris and K.H. Yung, J. Phys. Chem. Vol. 99(1995), p.12021.

Google Scholar

[31] M.G. Martin and J.I. Siepmann, J. Phys. Chem. B. Vol. 102(1998), p.2569.

Google Scholar

[32] Z.G. Zhang and Z. H Duan, J. Chem. Phys. Vol. 122(2005), p.214507.

Google Scholar

[33] R. Sun and Z.H. Duan, Geo. Cos. Acta. Vol. 69(2005), p.4411.

Google Scholar

[34] W.L. Jorgensen, J.D. Madura and C.J. Swenson, J. Am. Chem. Soc. Vol. 106(1984), p.6638.

Google Scholar

[35] P.S.Y. Cheung and J. G. Powles, Mol. Phys. Vol. 30 (1975), p.921.

Google Scholar

[36] P.S.Y. Cheung and J.G. Powles, Mol. Phys. Vol. 32(1976), p.1383.

Google Scholar

[37] M.T. Kirchner, R. Boese, W. E. Billups and L.R. Norman, J. Am. Chem. Soc. Vol. 126(2004), p.9407.

Google Scholar

[38] J.D. Bernal and R.H. Fowler, J. Chem. Phys. Vol. 1 (1933), p.515.

Google Scholar

[39] P.K. Chelling, S.R. Phillpot and P. Keblinski, Phys. Rev. B. Vol. 65(2002), p.144306/1.

Google Scholar

[40] E.D. Sloan, Energ. Fuel. Vol. 12(1998), p.191.

Google Scholar

[41] E.D. Sloan and C.A. Koh, Clathrate Hydrates of Natural Gases, third edn. (CRC Press, Taylor & Francis Group, New York, 2008).

Google Scholar