[1]
V. Bykov, A. Nishikawa, G. Dalle Carbonare, The thermal shield for the ITER magnet system: thermal, structural and assembly aspects, Fusion Engineering and Design, 58–59 (2001), p.177–182.
DOI: 10.1016/s0920-3796(01)00427-6
Google Scholar
[2]
Yu. Krasikov, V. Bykov, G. Dalle Carbonare, The ITER thermal shields for magnet system: specific design, assembly and structural issues, Fusion Engineering and Design, 66–68 (2003), p.1049–1054.
DOI: 10.1016/s0920-3796(03)00271-0
Google Scholar
[3]
V. Bykov,Yu. Krasikov,S. Grigoriev, The ITER thermal shields for the magnet system: Design evolution and analysis, Fusion Engineering and Design, Volumes 75-79, November 2005, Pages 155-162.
DOI: 10.1016/j.fusengdes.2005.08.013
Google Scholar
[4]
Lin C-S, Van Dresar NT, Hasan MM, A pressure control analysis of cryogenic storage systems, NASA TM 104409, (1991).
DOI: 10.2514/6.1991-2405
Google Scholar
[5]
Neil T. Van Dresar, James D. Siegwarth,Mohammad M. Hasan, Convective heat transfer coefficients for near-horizontal two-phase flow of nitrogen and hydrogen at low mass and heat flux, Cryogenics, 41 (2002) 805–811.
DOI: 10.1016/s0011-2275(01)00173-4
Google Scholar
[6]
Ichikawa, N. and Satoda, Y., Interface dynamics of capillary flow in a tube under negligible gravity condition, Coffoid and fnte&ce Sci., (1994) 162 350-355.
DOI: 10.1006/jcis.1994.1049
Google Scholar
[7]
Dreyer, M., Delgado, A. and Rath, H. -J, Capillary rise of liquid between parallel plates under microgravity, Colloid and Interface Sci., (1994) 163 158-168.
DOI: 10.1006/jcis.1994.1092
Google Scholar
[8]
Hewitt, H.C. and Parker, J.D. Bubble growth and collapse in liquid nitrogen, Heat Transfer, Tram ASME, Series C ( 1968) 90 22-26.
DOI: 10.1115/1.3597523
Google Scholar
[9]
Y. Suda, M. Itoh, Y. Sakai, K. Matsuura, Behavior of liquid nitrogen between electrodes in a microgravity environment, Cryogenics, 36 ( 1996) 567-571.
DOI: 10.1016/0011-2275(96)00054-9
Google Scholar
[10]
Panzarella CH, Kassemi M., On the validity of purely thermodynamic descriptions of two-phase cryogenic fluid storage, Fluid Mech, 2003; 484: 136–48.
DOI: 10.1017/s0022112003004002
Google Scholar
[11]
Charles Panzarella, David Plachta, Pressure control of large cryogenic tanks in microgravity, Cryogenics, 44 (2004) 475-483.
DOI: 10.1016/j.cryogenics.2004.03.009
Google Scholar
[12]
Mark S. Haberbusch, Robert J. Stochl, Adam J. Culler, Thermally optimized zero boil-off densified cryogen storage system for space, Cryogenics, 44 (2004) 485–491.
DOI: 10.1016/j.cryogenics.2004.02.016
Google Scholar
[13]
Kittel P, Plachta DW, Propellant preservation for mars missions, Adv Cryog Eng., 2000; 45: 443.
Google Scholar
[14]
D. K. Harris, D. C. Wilson, J. Rade, Thermal design and analysis of the Mars exploration Rover surface impact airbags, Journal of Spacecraft and Rockets, Vol. 44, No. 2, March–April (2007).
DOI: 10.2514/1.16782
Google Scholar
[15]
Zuber N, On the stability of boiling heat transfer, Trans ASME, 1958, 80(3): 711-716.
DOI: 10.1115/1.4012487
Google Scholar
[16]
Tuncer M. Kuzay, Jeffrey T. Collins and Joshua Koons, Boiling liquid nitrogen heat transfer in channels with porous copper inserts, International Journal of Heat and Mass Transfer, 42 (1999) 1189-1204.
DOI: 10.1016/s0017-9310(98)00248-8
Google Scholar