Enhanced Photoelectrocatalytic Activity of Oriented Rutile TiO2 Nanorod Array Film through Nb Doping

Article Preview

Abstract:

TiO2 nanorod array films with or without Nb doping grown directly on transparent conductive glass (FTO) were prepared by a facile hydrothermal method. The films were characterized by means of field emission scanning electron microscopy (FE-SEM) with energy-dispersive x-ray spectra (EDS), X-ray diffraction (XRD) and the X-ray photoelectron spectroscoy (XPS). The electrochemical impedance spectroscopy (EIS), linear sweep voltammetry (LSV) and transient photocurrent were investigated in a three-electrode system with TiO2 nanorod array film served as the photoanode. The photoelectrocatalytic activity of the films was evaluated by the oxidation of glucose under UV irradiation. The results show that both the pure and Nb-doped TiO2 nanorods perpendicularly grown on FTO substrate are rutile phase. The resistance of the TiO2 nanorod array photoanode is decreased significantly by Nb doping. The steady-state photocurrent (iss) for glucose oxidation at Nb-doped TiO2 nanorod array film is much higher than that at the pure one. The enhanced photoelectrocatalytic activity of the Nb-doped TiO2 nanorods could be attributed to the enhanced charge transport ability.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1010-1012)

Pages:

195-201

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Zhou, D. A. Wang, B. Yu, C. W. Wang,W. M. Liu, Mater. Chem. Phys. 113 (2009) , p.602.

Google Scholar

[2] J. H. Li, G. Wang, Q. Wang,W. Lu, J. Phys. Chem. B 110 (2006) 22029.

Google Scholar

[3] K. Esquivel, L. G. Arriaga, F. J. Rodriguez, L. Martinez,L. A. Godinez, Water Res. 43 (2009) , p.3593.

Google Scholar

[4] Y. Y. Wu,B. Tan, J. Phys. Chem. B 110 (2006) , p.15932.

Google Scholar

[5] F. R. Cummings, L. J. Le Roux, M. K. Mathe,D. Knoesen, Mater. Chem. Phys. 124 (2010) , p.234.

Google Scholar

[6] J. Jiao, H. Y. Li, B. Jiang, R. Schaller,J. F. Wu, J. Phys. Chem. C 114 (2010) , p.11375.

Google Scholar

[7] S. Mirdamadi, A. S. Attar, M. S. Ghamsari, F. Hajiesmaeilbaigi, K. Katagiri,K. Koumoto, Mater. Chem. Phys. 113 (2009) , p.856.

Google Scholar

[8] C. W. Zhou, A. Kumar,A. R. Madaria, J. Phys. Chem. C 114 (2010) 7787.

Google Scholar

[9] B. Liu,E. S. Aydil, J. Am. chem. Soc. 131 (2009) , p.3985.

Google Scholar

[10] H. Yu, S. Q. Zhang, H. J. Zhao, B. F. Xue, P. R. Liu,G. Will, J. Phys. Chem. C 113 (2009) , p.16277.

Google Scholar

[11] M. A. Gillispie, M. F. A. M. van Hest, M. S. Dabney, J. D. Perkins,D. S. Ginley, J. Mater. Res. 22 (2007) , p.2832.

Google Scholar

[12] H. Kamisaka, T. Suenaga, H. Nakamura,K. Yamashita, J. Phys. Chem. C 114 (2010) , p.12777.

Google Scholar

[13] J. H. Noh, S. Lee, J. Y. Kim, J. K. Lee, H. S. Han, C. M. Cho, I. S. Cho, H. S. Jung,K. S. Hong, J. Phys. Chem. C 113 (2009) , p.1083.

Google Scholar

[14] X. J. Lu, X. L. Mou, J. J. Wu, D. W. Zhang, L. L. Zhang, F. Q. Huang, F. F. Xu,S. M. Huang, Adv. Funct. Mater. 20 (2010) , p.509.

Google Scholar

[15] A. Ahmad, J. A. Shah, S. Buzby,S. I. Shah, Eur. J. Inorg. Chem. (2008) , p.948.

Google Scholar

[16] Y. D. Wang, B. M. Smarsly,I. Djerdj, Chem. Mater. 22 (2010) , p.6624.

Google Scholar

[17] J. Y. Zheng, H. Yu, X. J. Li,S. Q. Zhang, Appl. Surf. Sci. 254 (2008) , p.1630.

Google Scholar

[18] W. H. Leng, Z. Zhang, J. Q. Zhang,C. N. Cao, J. Phys. Chem. B 109 (2005) , p.15008.

Google Scholar

[19] S. Q. Zhang, D. L. Jiang,H. J. Zhao, Environ. Sci. Technol. 40 (2006) , p.2363.

Google Scholar

[20] D. L. Jiang, H. J. Zhao, Z. B. Jia, J. L. Cao,R. John, J. Photoch. Photobio. A 144 (2001) , p.197.

Google Scholar

[21] N. Philippidis, S. Sotiropoulos, A. Efstathiou,I. Poulios, J. Photoch. Photobio. A 204 (2009) , p.129.

Google Scholar

[22] Y. H. Han, S. Q. Zhang, H. J. Zhao, W. Wen, H. M. Zhang, H. J. Wang, F. Peng, Langmuir 26 (2010) , p.6033.

Google Scholar

[23] Y. Yang, X. J. Li, J. T. Chen,L. Y. Wang, J. Photoch. Photobio. A 163 (2004) , p.517.

Google Scholar

[24] L. R. Sheppard, T. Bak,J. Nowotny, J. Phys. Chem. B 110 (2006) , p.22447.

Google Scholar

[25] L. R. Sheppard, T. Bak, J. Nowotny,M. K. Nowotny, Int. J. Hydrogen Energy 32 (2007) , p.2660.

Google Scholar

[26] M. R. Hoffmann, S. T. Martin, W. Y. Choi,D. W. Bahnemann, Chem. Rev. 95 (1995) , p.69.

Google Scholar