Preparation and Application of Morph Genetic Materials in the Field of Environment

Article Preview

Abstract:

Morph genetic material is a kind of new material which can not only keep natural biological fine morphology and structure but also is given new characteristics and functions. At present, the main preparation methods for biomorphic materials are chemical solution impregnation method, sound chemical processing method, and nanocomposite solvent heating method, etc. Domestic and foreign researchers have been trying to use different templates to prepare for functional materials which have different tendencies. Compared with the conventional artificial materials, these materials show obvious superiority. Morph genetic material is a new type of functional materials, mainly used as catalyst and adsorbent, playing an important role in environmental protection.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1010-1012)

Pages:

207-210

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Di Zhang, Binghe Sun, Tongxiang Fan. Preparation and Microstructure Analysis of Biomorphic Materials [J]. China Science. 2004, 34(7): 721-729.

Google Scholar

[2] B. Sun, T. Fan, J. Xu, D. Zhang. Biomorphic synthesis of SnO2 microtubules on cotton fibers[J]. Mater. Lett. 2005, 59(18): 2325-2328.

DOI: 10.1016/j.matlet.2005.01.086

Google Scholar

[3] S. Chiarakorn, T. Areerob, N. Grisdanurak. Influence of functional silanes on hydrophobicity of MCM-41 synthesized from rice husk[J]. Sci. Tech. Adv. Mater. 2007, 8: 110-115.

DOI: 10.1016/j.stam.2006.11.011

Google Scholar

[4] Ray A. K., Das S. K., Pathak L. C. Synthesis of silicon carbide mats using natural fibers [J]. Materials Letters, 2003, 57: 1120-1123.

DOI: 10.1016/s0167-577x(02)00941-2

Google Scholar

[5] Aksoylu A. E., Madalena M., Freitas A., et al. The effects of different activated carbon supports and support modifications on the properties of Pt/AC catalysts[J]. Carbon. 2001, 39(2): 175-185.

DOI: 10.1016/s0008-6223(00)00102-0

Google Scholar

[6] M C H, H E, T O. Graphitization behavior of woodceramics and bambooceramics determined by Xray diffraction[J]. Porous Mater. 1999, 6: 233.

Google Scholar

[7] Xixiang Ye, Yibing Wang. The Application of Bamboo Charcoal, Prospect of Effective Utilization of Bamboo Resources in China, Function and the Science of Bamboo Charcoal and Bamboo Vinegar [M]. Beijing: Chinese Forestry Press, (2001).

DOI: 10.5772/intechopen.68542

Google Scholar

[8] Xu'e Gu. The Development of Health Type Paint to Automatically Adjust the Indoor Humidity. [J]. The Application of Science and Technology. 2000, 27(6): 2-3.

Google Scholar

[9] Zhou H , Fan T , Zhang D. Biotemplated Materials for Sustainable Energy and Environment: Current Status and Challenges [J] . ChemSusChem, 2011,4(10) : 1 344一1 387.

DOI: 10.1002/cssc.201100048

Google Scholar

[10] Zhang W , Zhang D , Fan T , et al. Novel Photoanode Structure Templated from Butterfly Wing Scales [J]. Chemistry of Materials , 2008 , 21 (1) : 33 – 40.

DOI: 10.1021/cm702458p

Google Scholar

[11] Song F , Su H , Han J , et al . Fabrication and Good Ethanol Sensing of Biomorphic SnO2 with Architecture Hierarchy of Butterfly Wings[J] . Nanotechnology , 2009 , 20(49) : 495 502.

DOI: 10.1088/0957-4484/20/49/495502

Google Scholar

[12] Tan Y,Gu J,Zang X, et al. Versatile fabrication of lntact Three-Dimensional Metallic Butterfly Wing Scales with Hierar-chical Submicrometer Structures [J]. Angewandte Chemie, 2011 ,123 (36) : 8 457 - 8 461.

DOI: 10.1002/ange.201103505

Google Scholar

[13] Tan Y, Gu J, Xu L, et al. High-Density Hotspots Engineered by Naturally Piled-Up Subwavelength Structures in Three-Di-mensional Copper Butterfly Wing Scales for Surface-Enbanced Raman Scattering Detection [J] Advanced Functional Materials, 2012, 22 (8) : 1 578 – 1 585.

DOI: 10.1002/adfm.201102948

Google Scholar

[14] Tan Y , Zang X, Gu J, et al. Morphological Effects on Surface-Enhanced Taman Scattering from Silver Butterfly Wing Scales Synthesized via Photoreduction [J] . Langmuir , 2011 , 27 (19) : 11 742 – 11 746.

DOI: 10.1021/la202445p

Google Scholar

[15] Zhou H , Fan T , Zhang D , et al. Novel Bacteria-Templated Sonochemical Route for the in Situ One-Step Synthesis of ZnS Hollow Nanostructures [J] . Chemistry of Materials , 2007 , 19(9) : 2 144 – 2 146.

DOI: 10.1021/cm0629311.s001

Google Scholar

[16] Zhu S , Zhang D , Li Z , et al. Precision Replication of Hierarchical Biological Structures by Metal Oxides Using a Sonochemical Method [J] . Langmuir , 2008 , 24(12) : 6 292 – 6 299.

DOI: 10.1021/la7037153

Google Scholar

[17] Zhu S , Zhang D , Gu J , et al. Biotemplate Fabrication of SnO2 Nanotubular Materials by a Sonochemical Method for Gas Sensors [J] . Journal of Nanoparicle Research , 2010 , 12(4) : 1 389 – 1 400.

DOI: 10.1007/s11051-009-9684-0

Google Scholar

[18] Shaohua Zheng, Ping Wang, Jieqiang Wang, ect . Prepared by Ultrasonic Coprecipitation ZrO-MgO Superfine Powder. China Powder Technology [J], 2004, 3: 17~20.

Google Scholar

[19] Han J , Su H , Zhang D , et al. Butterfly Wings as Natural Photonic Crystal Scaffolds for Controllable Assembly of CdS Nanoparticles [J] . Journal of Materials Chemistry , 2009 , 19(46) : 8 741 – 8 746.

DOI: 10.1039/b911101h

Google Scholar

[20] Gaillot D P , Deparis O , Welch V , et al. Composite Organic-Inorganic Butterfly Scales : Production of Photonic Structures with Atomic Layer Deposition [J] . Physical review E , 2008 , 78(3) : 031 922.

DOI: 10.1103/physreve.78.031922

Google Scholar

[21] Liu Q , Zhang D , Fan T . Electromagnetic Wave Absorption Properties of Porous Carbon/Co Nanocomposites [J] . Applied Physics Letters , 2008 , 93(1) : 013 110 – 013 113.

DOI: 10.1063/1.2957035

Google Scholar

[22] Tan Y , Gu J , Zang X , et al. Versatile Fabrication of Intact Three-Dimensional Metallic Butterfly Wing Scales with Hietatchical Submicrometer Structures [J] . Angewandte Chmie , 2011 , 123(36) : 8 457 – 8 461.

DOI: 10.1002/ange.201103505

Google Scholar

[23] Xufan Li. Plant Tissue Template Biomorphic Porous Oxide Preparation, Research of Microstructure and Properties: [PhD Thesis]. Shanghai: Shanghai Jiao Tong University, (2008).

Google Scholar

[24] S. Chiarakorn, T. Areerob, N. Grisdanurak, Influence of functional silanes on hydrophobicity of MCM-41 synthesized from rice husk. Sci. Tech. Adv. Mater, 2007, 8: 110-115.

DOI: 10.1016/j.stam.2006.11.011

Google Scholar

[25] Valtchev, V. P., Smaihi, M., Faust, A. C. and Vidal, L. Equisetum arvense templating of zeolite beta macrostructures with hierarchical porosity[J]. Chem. Mater. 2004, 16: 1350-1355.

DOI: 10.1021/cm035100t

Google Scholar

[26] Zhaoting Liu, Tongxiang Fana, Di Zhang. Hierarchically porous ZnO with high sensitivity and selectivity to H2S derived from biotemplates. Sensors and Actuators B, 2009, 136: 499-509.

DOI: 10.1016/j.snb.2008.10.043

Google Scholar

[27] K. H. Thiermann, W. Schafer, Ceramic Components for Environmentally Friendly Internal Combustion Engines[J], Ceram. Forum Int. 2000, 80(8): 15-20.

Google Scholar

[28] Tianchi Wang, Tongxiang Wang, Di Zhang, ect. Structure l/C, Al/(SiC + C) Preparation and Thermal Properties of Composite Materials [J]. Functional Materials, 2007, 38(10): 1682-1685.

Google Scholar

[29] Iwasaki M, Davis SA and Mann S J. Fabrication of ceramic components with hierarchical porosity. 2 Chemical Engineering Journal, 2004, 2: 99.

Google Scholar

[30] Cheng H M, Endo H, Okabe T, et al. Graphitization behavior of woodceramics and bambooceramics determined by X-ray diffraction[ J] . Porous Mater, 1999, 6: 233.

Google Scholar