Effects of Sucrose on Tuberous Root Formation and Saccharide Accumulation in Manihot esculenta Crantz In Vitro

Article Preview

Abstract:

The induction of tuberous roots of cassava in vitro is functional in MS medium containing 0.54 mM NAA, 0.44 mM BA and 3%-7% sucrose; meanwhile, the saccharide accumulation in the induced tuberous roots was increased with the sucrose content addition from 3%-7% in the inducible medium. Thus, the sucrose is an important factor for tuberous root induction in Cassava in vitro. The experimental results showed that the appropriate concentration of sucrose played a key role on the tuberous root induction in Cassava in vitro.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1010-1012)

Pages:

225-228

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Raemakers, M. Schreuder, L. Suurs, H. Furrer-Verhorst, J.P. Vincken, N.D. Vetten, E. Jacobsen, and R.G.F. Visser: Molecular Breeding. 16(2) (2005), pp.163-172.

DOI: 10.1007/s11032-005-7874-8

Google Scholar

[2] C. Jansson, A. Westerbergh, J.M. Zhang, X.W. Hu, and C.X. Sun: Applied Energy. 86, Supplement 1(0) (2009), p. S95-S99.

DOI: 10.1016/j.apenergy.2009.05.011

Google Scholar

[3] S. Prochnik, P.R. Marri, B. Desany, P.D. Rabinowicz, C. Kodira, M. Mohiuddin, F. Rodriguez, C. Fauquet, J. Tohme, T. Harkins, D.S. Rokhsar, and S. Rounsley: Tropical Plant Biol. 5 (2012), p.88–94.

DOI: 10.1007/s12042-011-9088-z

Google Scholar

[4] J.K. Lynam, in Potential Impact of Biotechnology on Cassava Production in the Third World, Centro Internacional de Agricultura Tropical (CIAT), Roca WM and Thro AM (1993), p.22–30.

Google Scholar

[5] J. Gopal, K. Iwama, and Y. Jitsuyama: In Vitro Cel. Dev. Biol. -Plant. 44(3) (2008), pp.221-228.

Google Scholar

[6] J. Gopal, and K. Iwama: Plant Cell Rep. 26 (2007), p.693–700.

Google Scholar

[7] J.W. Yu, J.S. Choi, C.P. Upadhyaya, S.O. Kwon, M.A. Gururani, A. Nookaraju, J.H. Nam, C.W. Choi, S.I.I. Kim, H. Ajappala, H.S. Kim, J.H. Jeon, and S.W. Park: Plant Science. 195 (2012), pp.1-9.

DOI: 10.1016/j.plantsci.2012.06.007

Google Scholar

[8] X. Xu, A.A.M.V. Lammeren, E. Vermeer, and D. Vreugdenhil: Plant physiology. 117(2) (1998), p . 575-584.

Google Scholar

[9] K.K. Kartha, O.L. Gamborg, F. Constabel, and J.P. Shyluk: Plant Science Letters. 2(2) (1974), pp.107-113.

DOI: 10.1016/0304-4211(74)90066-2

Google Scholar

[10] G.B. Cabral, F.J.L. Aragao, K. Matsumoto, D.C. Monte-Neshich, and L. Rech, in Cassava tissue culture: multiple shoots and somatic Embryogenesis, In: Roca W, Thro A (eds) Proceedings of the international scientific meeting of the cassava biotechnology network(CIAT), Cali, Colombia (1993).

Google Scholar

[11] R.D. Medina, M.M. Faloci, A.M. Gonzalez, L.A. Mroginski: Annals of botany. 99(3) (2007), pp.409-423.

Google Scholar

[12] M. Fan, Z.C. Liu, L.G. Zhou, T. Lin, Y.H. Liu, and L.J. Luo: J Plant Growth Regul. 30(1) (2011), pp.11-19.

Google Scholar

[13] W.C. Yu, P.J. Joyce, D.C. Cameron, and B.H. McCown: Plant Cell Rep. 19(4) (2000), pp.407-413.

Google Scholar

[14] S.N.I.M. Salehuzzaman, E. Jacobsen, and R.G.F. Visser: Plant Science. 98(1) (1994), pp.53-62.

Google Scholar