Phase Composition of Zirconium Dioxide Stabilized with Yttrium

Article Preview

Abstract:

The results of X-ray and thermodynamic analysis of the phase formation in the system Zr-YO, which is the starting material for the formation of yttrium-stabilized ceramic zirconia. Found that the material is multiphase and contains monoclinic, cubic and tetragonal zirconia weight ratios which vary considerably.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

108-114

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O.S. Tolkachov, Y.F. Ivanov, S.Y. Filimonov, A.A. Kachaev, O.L. Hasanov, E.S. Dvilis, Phase composition and defective substructure of nanopowders on the basis of zirconia dioxide, modified by powerful ultrasonic exposure, Izv. Vuzov. Physics. 56 (2013) 356-360.

Google Scholar

[2] Yu.A. Abzaev, O.S. Tolkachev, S.Yu. Filimonov, Yu.F. Ivanov, Diffraction analysisof powders processed by powerful ultrasound stabilized with yttrium of zirconium dioxide, TSUAB, Tomsk, 2013.

Google Scholar

[3] I.I. Kornilov, N.M. Matveeva, L.I. Pryakhina, R.S. Polyakova, Metal chemical properties of the periodic system elements, Nauka, Moscow, 1966.

Google Scholar

[4] I.I. Kornilov, Metallides and the interaction between them, Nauka, Moscow, 1964.

Google Scholar

[5] I.I. Kornilov, V.V. Glazova, Interaction of the refractory metal of transition groups with oxygen, Nauka, Moscow, 1964.

Google Scholar

[6] N.P. Lyakishev, Phase diagrams of binary metallic systems, Mashinostroyeniye, Moscow, 2000.

Google Scholar

[7] T.P. Chernyaeva, A.I. Stukalov, V.M. Gritsina, Oxygen in zirconium, NSTC NFC NSC KIPT, Kharkov, 1999.

Google Scholar

[8] Xue-Jun Jin, Martensitic transformation in zirconia containing ceramics and its applications, Current Opinion in Solid State and Materials Science. 9 (2005) 313-318.

DOI: 10.1016/j.cossms.2006.02.012

Google Scholar

[9] V. Raghavan, The Fe-O-Zr System in Phase Diagrams of Ternary Iron Alloys, Institute of Metals, Calcutta. 5(1989) 374-379.

Google Scholar

[10] C. Wang, M. Zinkevich, F. Aldinger, On the Thermodynamic Modeling of the Zr-O System, Calphad. 28 (2004) 281-292.

DOI: 10.1016/j.calphad.2004.09.002

Google Scholar

[11] O. Fukui, H. Funakoshi et. al., Phase Relationsand Equations of State of ZrO2 under High Temperature and High Pressure, Phys. Rev. B.63 (2001) 174108-1-174108-8.

Google Scholar

[12] S. Desgrenius, K. Lagarec, High-Density ZrO2 and HfO2: Crystalline Structures and Equations of State, Phys. Rev. B.59 (1999) 8467-8472.

Google Scholar

[13] F.H. Spalding, A.H. Daan, Rare-earth metals, Metallurgy, Moscow, 1965.

Google Scholar

[14] M. Foex, J.P. Traverse, Comment on High Temperature Phase Transformation in Crystalline Phases of Rare Earth Sesqui oxides, Rev. Hautes Temp. Refract, 32 (1966) 429-453.

Google Scholar

[15] C. Ming, H. Bengt, J.G. Ludwig, Thermodynamic modeling of the ZrO2-YO1.5 system, Solid State Ionics. 170 (2004) 255-274.

Google Scholar

[16] H.G. Scott, Phase Relationships in the Yttria-Rich Part of the Zirconia-Yttria System, J. Mater. Sci. 12 (1977) 311-316.

DOI: 10.1007/bf00566272

Google Scholar

[17] V.P. Redko, L.M. Lopato, Crystal Structure of the Compounds M4Zr3O12 and M4Hf3O12 (where Mis a Rare-Earth Element), Inorg. Mater. (Engl. Trans.), 27 (1991) 1609-1614.

Google Scholar

[18] S.P. Ray, V.S. Stubican, Fluorite Related Ordered Compounds in the ZrO2-CaO and ZrO2-Y2O3 Systems, Mater. Res. Bull. 12 (1977) 549-556.

DOI: 10.1016/0025-5408(77)90122-2

Google Scholar

[19] O. Fabrichnaya, Ch. Wang, et. al, Phase Equilibria and Thermodynamic Properties of the ZrO2-GdO1,5-YO1,5 System, J. Phase Equilib. Diffus. 26 (2005) 591-604.

DOI: 10.1007/s11669-005-0004-9

Google Scholar

[20] H.G. Scott, Phase Relationships in the Zirconia-Yttria System, J. Mater. Sci. 10 (1975) 1527-1535.

Google Scholar

[21] M. Jayaratna, M. Yoshimura, S. Somiya Subsolidus, Phase Relations in the Pseudoternary System ZrO2-YO1.5-CrO1.5 in Air, J. Amer. Ceram. Soc. 67 (1984) 240-242.

Google Scholar

[22] P. Li, I.-W. Chen, J.E. Penner-Hahn, Effect of Dopants on Zirconia Stabilization - an X-ray Absorption Study: I. Trivalent Dopants, J. Am. Ceram. Soc. 77 (1994) 118-128.

DOI: 10.1111/j.1151-2916.1994.tb06964.x

Google Scholar

[23] K. Tsukuma, Y. Kubota, T. Tsukidate, Thermal and Mechanical Properties of Y2O3 –Stabilized Tetragonal Zirconia Polycrystals, Science and Technology of Zirconia II, Advances in Ceramics. 12 (1983) 382-390.

Google Scholar

[24] C. Pascual, P. Duran, Subsolidus Phase Equilibria and Ordering in the System ZrO2-Y2O3, J. Am. Ceram. Soc. 66 (1983) 23-27.

DOI: 10.1111/j.1151-2916.1983.tb09961.x

Google Scholar

[25] D.N. Argyriou, Measurement of the Static Disorder Contribution to the Temperature Factor in Cubic-stabilized ZrO2, J. Appl. Cryst. 27 (1994) 155-158.

DOI: 10.1107/s0021889893007964

Google Scholar

[26] D.I. Phalen, D.A. Vaughan, N.A. Richard, Oxidation of Zr-Y Alloys, Adv. X-Ray Anal. 8 (1965) 143-150.

Google Scholar