[1]
R.W. Cahn, Slip and polygonization in aluminium. J. Inst. Metals, 79, (1951), 129–158.
Google Scholar
[2]
E.A. Calnan, Laue asterism and deformation bands, J. Acta Cryst., 5, (1952), 557-563.
DOI: 10.1107/s0365110x52001593
Google Scholar
[3]
S. I. Gubkin, Theory of Metal Forming, Metallurgizdat, Moscow, [in Russian], (1947).
Google Scholar
[4]
R. W. K. Honeycombe, Inhomogeneities in the plastic deformation of the metal crystals I-II, J. Inst. Metals 80 (1952), 45-49.
Google Scholar
[5]
M. P Kashchenko, L. A. Teplyakova and A. V. Paul, Orientation of boundaries of planar shear bands in Ni3Fe single crystals, Russian Physics Journal 40 (1997), 62-67.
DOI: 10.1007/bf02508807
Google Scholar
[6]
N.A. Koneva, L.A. Teplyakova and E.V. Kozlov, Influence of degree of long-range order on work hardening of mono– and polycrystalline alloy, Physics of Metals and Metallography, (1979) 48, 138-145.
Google Scholar
[7]
D.V. Lychagin, Formation of fragment shear deformation with the compression in fcc single crystals, Fundamental problems of modern material science, 1(2004), 112 -119.
Google Scholar
[8]
D.V. Lychagin, Makrofragmentation of deformation fcc single crystals with highly symmetrical orientation, Fundamental problems of modern material science, 1 (2005), 45 - 49
Google Scholar
[9]
D. V. Lychagin, L. A. Teplyakova, The primary macrofragmentation of shear in compressed aluminum single crystals, Technical Physics Letters, 29 (2003), 516-518.
DOI: 10.1134/1.1589576
Google Scholar
[10]
D.V. Lychagin, V.A. Starenchenko and E.V. Kozlov Evolution of deformation in nickel single crystals with the compression axis orientation [001] and lateral faces {110}, Physical Mesomechanics, 8 (2006), 39-48.
Google Scholar
[11]
H. Müller, G. Leibfried, Die Овerflächenerscheinungen auf gedehnten Aluminium-Einkristallen in ihrer Abhängigkeit von der Dehngeschwindigkeit, Zeitschrift für Physik 142 (1955), 87-115.
DOI: 10.1007/bf01329414
Google Scholar
[12]
D. Peirce, R.I. Asaro, A. Needleman, An analysis of nonuniform and localized deformation in ductile single crystals, Acta met. 30 (1982), 1087-1119.
DOI: 10.1016/0001-6160(82)90005-0
Google Scholar
[13]
L.A. Teplyakova, E.V. Kozlov, Formation of scale structural levels of plastic deformation localization in metal single crystals. Macrolevel I., Physical Mesomechanics, 8 (2005), 57-66.
Google Scholar
[14]
L.A. Teplyakova, E.V. Kozlov, The macrofragmentation of shear in nickel single crystals by active plastic deformation, Physical Mesomechanics 3 (2000), 77-82.
Google Scholar
[15]
L. A. Teplyakova, D. V. Lychagin and E. V. Kozlov, Shear localization in deformed Al single crystals with a compression axis orientation [001], Physical Mesomechanics 6, (2003), 19-24.
Google Scholar
[16]
L. A. Teplyakova, D.V. Lychagin and I.V. Bespalova, Regularities of macrofragmentation of deformation in monocrystals of aluminum with orientation of compression axis [110], Physical mesomechanics 7 (2004), 63-78.
DOI: 10.1016/j.physme.2009.07.009
Google Scholar
[17]
L.A. Teplyakova, D.V Lychagin and I.V. Bespalova, Features of shear spatial organization at macrolevel in [111] - monocrystals of aluminium, Physical mesomechanics, (2006), 63-71
Google Scholar
[18]
W. Vorbrugg, H.Gh. Goetting and Ch. Swink Work-hardening and surface investigations on copper single crustals oriented for multiple glide, Phys.stat.sol. (b), 46 (1971), 257-264.
DOI: 10.1002/pssb.2220460123
Google Scholar
[19]
H.Wilsdorf, D. Kuhlmann-Wilsdorf, Elektronenmikroskopische Untersuchung der Oberfläche von gedehntem Reinstaluminium I-III, Zeitschrift für angewandte Physik 4 (1952), 361-424.
Google Scholar