Interaction Study of Carbide Precipitation and Impurity Segregation under Temper Embrittlement Conditions in a Coarse-Grained Heat-Affected Zone in Q690 Steel

Article Preview

Abstract:

This work studied the interaction between carbide precipitation and impurity segregation under temper embrittlement (TE) conditions in a coarse-grained heat-affected zone (CGHAZ) in Q690 steel, a low-alloy high-strength structural steel used in the hydraulic support in the fully-mechanized mining face. From the perspective of carbide precipitation, through thermodynamics calculation and analysis, it was found that the existence of cementite at the grain boundaries was preceded by impurities segregation (primarily phosphorus). The precedent phosphorus segregation thus enhances the nucleation rate of cementite at the grain boundaries by lowering the ferrite/cementite interfacial energy. Both carbide precipitation and impurity segregation at the grain boundaries reached a maximum as a result of their mutual role in the temperature range of TE.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

189-193

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. K. Banerji, C. L. Briant: Can. Metall. Q., 1980, 19, 169-175.

Google Scholar

[2] R. G. Faulkner: Mater. Sci. Technol., 1989, 5, 1095-1101.

Google Scholar

[3] S. -H. Song, L. Zheng: Mater. Sci. Technol., 2014, 000, 1-8.

Google Scholar

[4] R. Viswanathan. Metall. Trans., 1971, 2, 809-815.

Google Scholar

[5] S.J. Wu, R.G. Ding, J.F. Knott: Mater. Sci. Technol., 2007, 23, 1262-1268.

Google Scholar

[6] Henry K. Obermeyer, George Krauss, J. Heat Treat., 1980, 1, 31-39.

Google Scholar

[7] A. Wirth, B. Clarke: Met. Technol., 1981, 8, 161-163.

Google Scholar

[8] J. B. Rellick, C. J. McMahon: Metall. Trans., 1974, 5, 2439-2450.

Google Scholar

[9] H. Ohtani, H. C. Feng, C. J. McMahon, R. A. Mulford. Metall. Trans. A., 1976, 7, 87-101.

Google Scholar

[10] R. Viswanathan, T. P. Sherlock. Metall. Trans., 1972, 3, 459-468.

Google Scholar

[11] M. A. Islam, J. F. Knott, P. Bowen: Mater. Sci. Technol., 2005, 21, 76-84.

Google Scholar

[12] N.H. Heo, S. -J. Kim: Mater. Sci. Eng., A, 2012, 556, 533-539.

Google Scholar

[13] Keun-Bong Yoo, Jae-Hoon Kim: Procedia Engineering, 2011, 10, 2484-2489.

Google Scholar

[14] R. L. Schuyler: Metall. Trans. A, 1975, 6, 1473-1474.

Google Scholar

[15] N. Bandyopadhyay, C. L. Briant, E. L. Hall. Metall. Trans. A., 1985, 16, 721-737.

Google Scholar

[16] McLean, Donald, Clarendon Press, Oxford, (1957).

Google Scholar

[17] Zuyao, Xu; Siwei, Cao, Mater. Sci. Technol., 1985, 1, 1025-1028.

Google Scholar

[18] G. J. Shiflet, J. R. Bradley, H. I. Aaronson, Metall. Trans. A., 1978, 9, 999-1008.

Google Scholar

[19] M. Perez, M. Dumontb, D. Acevedo-Reyes, Acta Mater., 2008, 56, 2119-2132.

Google Scholar

[20] D. S. Zhou, G. J. Shiflet. Metall. Trans. A., 1992, 23, 1259-1269.

Google Scholar

[21] D. Cheetham, N. Ridley, J. Iron Steel Inst., 1973, 211, 648-652.

Google Scholar

[22] J. J Kramer, G. M Pound, R. F Mehl, Acta Metall., 1958, 6, 763-771.

Google Scholar

[23] H.O. K Kirchner, B. G Mellor, G. A Chadwick, Acta Metall., 1978, 26, 1023-1031.

Google Scholar

[24] R. G. C. Hill, J. W. Martin: Metal Treat. DropForg., 1962, 29, 301-307.

Google Scholar

[25] S. -H. Song, R.G. Faulkner, P.E.J. Flewitt: Mater. Sci. Technol., 2001, 17, 523-528.

Google Scholar

[26] V. V. Zabil'skii. Met. Sci. Heat Treat., 1987, 29, 32-42.

Google Scholar