Application of Peridynamic Theory to Nanocomposite Materials

Article Preview

Abstract:

The purpose of this paper is to describe the computational procedure developed to apply the Bond-based Peridynamic Theory to nanocomposite materials. The goal is to predict the Young’s modulus as a function of the filling fraction of different nanocomposite materials with an accuracy better than that of other methods (like Halpin-Tsai, Mori-Tanaka, FEA models). A displacement control method is adopted here in order to simulate the incremental application of an external load. The constitutive law considered is linear and thus the problem can be seen as a static-linear problem. A description of the model and of the “multiscale approach” is given, supported by a comparison between experimental data and simulation results for different nanocomposites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

44-48

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. James e P. Krzysztof, «Polymer Nanocomposites for Aerospace Applications: Properties, » Advanced Engineering Materials, n. 5, pp.769-778, (2003).

Google Scholar

[2] B. Pukanszky, «Interfaces and interphases in multicomponent materials: past, present, future, » European Polymer Journal, n. 41, pp.645-662, (2005).

DOI: 10.1016/j.eurpolymj.2004.10.035

Google Scholar

[3] S. A. Silling, Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces, Journal of the Mechanics and Physics of Solids, no. 48, pp.175-209, (2000).

DOI: 10.1016/s0022-5096(99)00029-0

Google Scholar

[4] S. A. Silling and E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Computers and Structures, no. 83, pp.1526-1535, (2005).

DOI: 10.1016/j.compstruc.2004.11.026

Google Scholar

[5] T. D. Fornes and D. R. Paul, Modeling properties of nylon 6/clay nanocomposites using composite theories, Polymer, no. 44, pp.4993-5013, (2003).

DOI: 10.1016/s0032-3861(03)00471-3

Google Scholar

[6] D. Ying, M. Yiu-Wing and J. Xing, Predictions of stiffness and strength of nylon 6/MMT nanocomposites with an improved staggered model, Composite: Part B, no. 39, pp.1062-1068, (2008).

DOI: 10.1016/j.compositesb.2007.09.005

Google Scholar

[7] L. Sun-Mou, W. Sheng-Huang, L. Gwo-Geng and D. Trong-Ming, Unusual mechanical properties of melt-blended poly(lactic acid) (PLA)/clay nanocomposites, European Polymer Journal, (2014).

DOI: 10.1016/j.eurpolymj.2013.12.012

Google Scholar

[8] G. M. Odegard, Clancy, T. C. and T. S. Gates, Modeling of the mechanical properties of nanoparticle/polymer composites, Polymer, no. 46, pp.553-562, (2005).

DOI: 10.1016/j.polymer.2004.11.022

Google Scholar

[9] S. Mishra, S. Sonawane and N. Shimpi, Influence of organo-montomorillonite on mechanical and rheological properties of polyamide nanocomposites, Applied Clay Science, no. 46, pp.222-225, (2009).

DOI: 10.1016/j.clay.2009.07.024

Google Scholar

[10] D. Wilson, H. D. Stenzenberger and P. M. Hergenrother, Polyimides, London: Chapman & Hall, (1990).

Google Scholar

[11] L. Tianxi, T. Yuejin and Z. Wei-De, Preparation and characterization of carbon nanotube/polyetherimide nanocomposite films, Composites Science and Technology, no. 67, pp.406-412, (2007).

DOI: 10.1016/j.compscitech.2006.09.007

Google Scholar