State-Space Rotor Aeroelastic Modeling for Real-Time Helicopter Flight Simulation

Article Preview

Abstract:

This paper introduces a new approach for the identification of linear state-space models of dynamical systems of arbitrary complexity. The identification procedure is described and applied for modeling aeroelastic response of helicopter main rotors. With the aim of developing a tool that might be conveniently applied for real-time simulations of helicopter flight dynamics, the state-space model considered is a reduced-order description of loads transmitted to the airframe due to hub motion and blade pitch controls. In order to validate the proposed approach, loads from the state-space, reduced-order model are compared with those predicted by the complete full-state, nonlinear rotor model for prescribed helicopter maneuvers.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

451-459

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.W. Du Val: A Real-Time Multi-Body Dynamics Architecture for Rotorcraft Simulation. In Proceedings of Royal Aeronautical Society and American Helicopter Society International Conference on The Challenge of Realistic Rotorcraft Simulation. London, UK (2001).

Google Scholar

[2] G.D. Padfield and M.D. White: Flight Simulation in Academia HELIFLIGHT in its First Year of Operation at the University of Liverpool. The Aeronautical Journal, Vol. 107, No. 1075 (2003), pp.529-538.

DOI: 10.1017/s0001924000013415

Google Scholar

[3] R. Gori, J. Serafini, M. Molica Colella and M. Gennaretti: Assessment of a State-Space Aeroelastic Rotor Model for Rotorcraft Dynamics Analysis. In Proceedings of XXII AIDAA Conference. Napoli, Italy (2013).

DOI: 10.1007/s13272-016-0196-1

Google Scholar

[4] J. Serafini, M. Molica Colella and M. Gennaretti: A Finite-State Aeroelastic Model for Rotorcraft-Pilot Coupling Analysis. CEAS Aeronautical Journal, Vol. 5, No. 1 (2013), pp.1-11.

DOI: 10.1007/s13272-013-0086-8

Google Scholar

[5] D. Amsallem and C. Farhat: Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity. AIAA Journal, Vol. 46, No. 7 (2008), pp.1803-1813.

DOI: 10.2514/1.35374

Google Scholar

[6] M. Ghoreyshi, K.J. Badcock and M.A. Woodgate: Accelerating the Numerical Generation of Aerodynamic Models for Flight Simulation. Journal of Aircraft, Vol. 46, No. 3 (2009), pp.972-980.

DOI: 10.2514/1.39626

Google Scholar

[7] D. Amsallem, J. Cortial and C. Farhat: Toward Real-Time Computational-Fluid-Dynamics-Based Aeroelastic Computations Using a Database of Reduced-Order Information. AIAA Journal, Vol. 48, No. 9 (2010), p.2029-(2037).

DOI: 10.2514/1.j050233

Google Scholar

[8] L. Piegl and W. Tiller: The NURBS book. (Springer-Verlag, Berlin 1997).

Google Scholar

[9] G.H. Golub and V. Pereyra: The Differentiation of Pseudo-Inverses and Nonlinear Least Square Problems Whose Variables Separate. SIAM Journal on Numerical Analysis, Vol. 10, No. 2 (1973), pp.413-432.

DOI: 10.1137/0710036

Google Scholar

[10] D.H. Hodges and E.H. Dowell: Nonlinear Equation for the Elastic Bending and Torsion of Twisted Nonuniform rotor Blades. NASA TN D-7818 (1974).

Google Scholar

[11] M. Gennaretti and G. Bernardini: Aeroelastic response of helicopter rotors using a 3D unsteady aerodynamic solver. The Aeronautical Journal, Vol. 110, No. 1114 (2006), pp.793-802.

DOI: 10.1017/s0001924000001664

Google Scholar

[12] M. Gennaretti, M. Molica Colella and G. Bernardini: Prediction of Tiltrotor Vibratory Loads with Inclusion of Wing-Proprotor Aerodynamic Interaction. Journal of Aircraft, Vol. 47, No. 1 (2010), pp.71-79.

DOI: 10.2514/1.41825

Google Scholar

[13] J.M. Greenberg: Airfoil in Sinusoidal Motion in a Pulsating Stream. NACA TN-1326 (1947).

Google Scholar

[14] M. Gennaretti and G. Bernardini: Novel Boundary Integral Formulation for Blade-Vortex Interaction Aerodynamics of Helicopter Rotors. AIAA Journal, Vol. 45, No. 6 (2007), pp.1169-1176.

DOI: 10.2514/1.18383

Google Scholar

[15] G. Bernardini, J. Serafini, M. Molica Colella and M. Gennaretti: Analysis of a Structural-Aerodynamic Fully Coupled Formulation for Aeroelastic Response of Rotorcraft. Aerospace Science and Technology, Vol. 39, No. 6 (2013), pp.1-28.

DOI: 10.1016/j.ast.2013.03.002

Google Scholar

[16] L. Morino, F. Mastroddi, R. De Troia, G.L. Ghiringhelli and P. Mantegazza: Matrix Fraction Approach for Finite-State Aerodynamic Modeling. AIAA Journal, Vol. 33. No. 4 (1995), p.703–711.

DOI: 10.2514/3.12381

Google Scholar

[17] D.F. Shanno: Conditioning of Quasi-Newton Methods for Function Minimization. Mathematics of Computation, Vol. 24, No. 111 (1970), pp.647-656.

DOI: 10.1090/s0025-5718-1970-0274029-x

Google Scholar