On the Unsteady Flow of Two Incompressible Immiscible Second Grade Fluids between Two Parallel Plates

Article Preview

Abstract:

Unsteady, pressure driven in the gap between two parallel plates flow of two non-Newtonian incompressible second grade fluids is considered. The governing equations are established for the particular two-layer flow and analytical solutions of the equations that satisfy the imposed boundary conditions are obtained. The velocity of each fluid is expressed as function of the material constants, time dependent pressure gradient and other characteristics of the fluids. As part of the solution, an expression for the interface velocity is derived. We analyze the shift of the velocity maximum from one to another fluid as a function of variety of values of fluids’ parameters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

546-553

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Qi Hiatouo, Xu Mingyu: App. Math. Modeling Vol. 33 (2009), p.4184.

Google Scholar

[2] J. Kren and L. Hyncik: Int. J. Math. and Comp. in Simulation Vol. 76 (2007), p.116.

Google Scholar

[3] J. E. Dunn, K. R. Rajagopal: Int. J. Engng. Sci. Vol. 33 (1995), p.689.

Google Scholar

[4] I. Ahmad: J. Adv. Theor. Appl. Mech., Vol. 6 (2013), p.95.

Google Scholar

[5] O. D. Makinde, T. Chinyoka: Comp. And Math. With Appl. Vol. 61 (2011), p.1167.

Google Scholar

[6] T. Wenchang, Xu Mingyu: Acta Mech. Sinica Vol. 20 (2004), p.471.

Google Scholar

[7] A. Shafiq, M. Nawaz, T. Hayat and A. Alsaed: Braz. J. Chem Eng. Vol. 30 (2013), p.599.

Google Scholar

[8] T. Hayat, M. Khan, M. Ayub, A. M. Siddiqui: Arch. Mech. Vol. 57 (2005), p.405.

Google Scholar

[9] A. M. Siddiqui, M. A. Rana, R. Qamar, S Irum, A. Ansari: Adv. Studies Theor Phys. Vol. 6 (2012), p.27.

Google Scholar

[10] M. A. Imran, M. Imran, C. Fetecau: Communications in Num. Analysis (2014), in press.

Google Scholar

[11] A. Mahmood, N. A. Khan, C. Fetacau, M. Jamil, Q. Rubbab: J. Of Prime Res. In Math. Vol. 5 (2009) 192.

Google Scholar

[12] D. M. Klimov, A. G. Petrov: Arch. Of App. Mech. Vol. 70 (2004), p.3.

Google Scholar

[13] S. Islam, Z. Bano, T. Haroon, A. M. Siddiqui: Proceedings of the Romanian Academy, Series A, Vol. 12 (2011), p.291.

Google Scholar

[14] M. Jamil, A. Rauf, C. Fetacau , N. A. Khan,: Commun. Nonlenear Sci. Simulat. Vol. 16 (2011) p. (1959).

Google Scholar

[15] K. R. Rajagopal: Int. J. Non-Linear Mech. Vol. 17 (1982), p.369.

Google Scholar

[16] N. Kapur, J. B. Shukla: J. Appl. Math. Mech., Vol. 44 ( 1964), p.268.

Google Scholar