Influence of Manufacturing Process on the Fatigue Strength of Gears

Article Preview

Abstract:

With cold forging processes it is possible to produce parts characterized by high strength, high dimensional accuracy and high surface quality. In order to optimize the forming process and to be able to use the advantages of cold forging specifically and combined, it is necessary to find correlations between manufacturing parameters on the one side, strength and other properties like hardness distribution and surface quality of the component on the other side. The research work covered in this paper focuses on the correlation of the components properties influenced by its manufacturing history and their fatigue strength. The used component is a gear produced by a lateral cold forging process. For the investigations an experimental setup has been designed. The aim for the design of the setup is to reproduce the real contact condition for the contact of two gears. To obtain different component properties the production process of the gear was varied by producing the parts by a milling operation. First of all, the components’ properties, for example hardness distribution, remaining residual stresses, orientation of fibers and surface quality, were determined. The components’ fatigue behavior was determined using a high frequency pulsator and evaluated in terms of finite life fatigue strength and fatigue endurance limit. These examinations were used to produce Woehler curves for the differently manufactured components with a certain statistical data analysis method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

269-276

Citation:

Online since:

September 2014

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Tobie, P. Oster, B. -R. Höhn, Systematic investigations on the influence of case depth on the pitting and bending strength of case carburized gear, Gear technology, 22 (2005)4, 40-48.

DOI: 10.1115/detc2003/ptg-48015

Google Scholar

[2] U. Weigand, Werkstoff- und Wärmebehandlungseinflüsse auf die Zahnfußtragfähigkeit, FZG, Lehrstuhl für Maschinenelemente, Forschungsstelle für Zahnräder und Getriebebau, (1999).

Google Scholar

[3] A. Stenico, Werkstoffmechanische Untersuchungen zur Zahnfußtragfähigkeit einsatzgehärteter Zahnräder, FZG, Lehrstuhl für Maschinenelemente, Forschungsstelle für Zahnräder und Getriebebau, (2007).

Google Scholar

[4] A. Yoshida, K. Miyanishi, Y. Ohue, K. Yamamoto, N. Satoh, K. Fujita, Effect of hardended depth on fatigue strength of carbonitrided gears. JSME International Journal 38 (1995) 3, 135-142.

DOI: 10.1299/jsmec1993.38.135

Google Scholar

[5] W. Müller, B. Hager, K. Pöhlandt, Einfluss von Verfahrensparametern beim Fließpressen auf das Ermüdungsverhalten. Materialwissenschaft und Werkstofftechnik 66 (1986) 49-50.

DOI: 10.1002/mawe.19940250807

Google Scholar

[6] C. Temmel, B. Karlsson, N. -G. Ingesten, Fatigue anisotropy in cross-rolled, hardened medium carbon steel resulting from MnS inclusions. Metallurgical and Materials Transactions A 37 (2006) 10, 2995-3007.

DOI: 10.1007/s11661-006-0181-0

Google Scholar

[7] E. Pessard, F. More, A. More, The Anisotropic Behavior of Forged Steel l, Advanced Engineering Material s, Vol. II , Sep . 2009, Iss . 9 , 732-735.

Google Scholar

[8] E. Siebel, M. Gaier, Untersuchungen über den Einfluss der Oberflächenbeschaffenheit auf die Dauerschwingfestigkeit metallischer Bauteile, VDI-Z (98) 1956, 1715-1724.

Google Scholar

[9] J.E. Hoffmann, D. Löhe, Influence of macro residual stresses on the fatigue behavior of smooth and notched specimens made from quenched SAE 1045 steel. HTM – Härterei Technische Mitteilungen 57 (2002) 2, 79-85.

DOI: 10.4271/2002-01-1408

Google Scholar

[10] M. Hueck, An improved method for the evaluation of staircase tests, Zeitschrift fuer Werkstofftechnik 14 (1983) 12, 406-417.

Google Scholar

[11] A. Reiß; U. Engel; M. Merklein, Investigation on the influence of manufacturing parameters on the fatigue strength of components, Key Eng. Mater. 554-557(2013), 280-286.

DOI: 10.4028/www.scientific.net/kem.554-557.280

Google Scholar