Decrease of Springback by Geometrical Modification of the Sheet Metal Part

Article Preview

Abstract:

Super high strength steels are used as the importance of lightweight construction increases. They induce a high amount of springback during removal of a tool and this has to be compensated. Previously developed methods of springback compensation [1] have two disadvantages. Firstly springback of a u-shaped profile cannot be compensated in one deep drawing step. Secondly these methods only take the material parameters of one sheet metal batch into account. With varying material properties, problems arise because the tool is especially designed for one sheet metal batch. Therefore the objective of this work is not to compensate springback but to reduce it by a preventive measure which allows the production of a u-shaped profile by one deep drawing step. An additional advantage of the measure, which consists of a geometric change of the punch radii and is defined by several parameters, is that the influence of the sheet metal batch on springback is significantly reduced. This can be realised by a suitable choice of values for these parameters. Apart from this measure a method was developed whereby appropriate values for the parameters can be determined on the basis of a metamodel without the need of individual simulations. By way of example the method is applied to a u-shaped profile, however it can be used for structural components in general.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

277-284

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Roll, T. Lemke, K. Wiegand, Possibilities and Strategies for Simulations and Compensation for Springback, AIP Conference Proceedings 778 (2005) 295-302.

Google Scholar

[2] K. Roll, T. Lemke, K. Wiegand, Simulationsgestützte Kompensation der Rückfederung, 3. LS-DYNA user forum, Bamberg, (2004).

Google Scholar

[3] D. Banabic, Sheet Metal Forming Processes, first ed., Springer, Heidelberg, (2010).

Google Scholar

[4] T. Schönbach, T. Bauer, New Method to Calculate and Compensate Springback, Proceedings of the 7th International Conference and Workshop on Numerical Simulation of 3D Sheet Metal Forming Processes-Verification of Simulation with Experiment, Numisheet, (2008).

Google Scholar

[5] Kontinuierlich schmelztauchveredelte Flacherzeugnisse aus Stahl – Technische Lieferbedingungen, DIN EN 10346. (2014).

DOI: 10.31030/2275670

Google Scholar

[6] R. Neugebauer, T. Lieber, Experimentelle Untersuchung von werkzeuggeometrischen Maßnahmen zur Kompensation der Rückfederung, Forschungsbericht P 662 der Forschungsvereinigung Stahlanwendung, Verlag und Vertriebsgesellschaft mbH, Düsseldorf, Germany (2008).

Google Scholar

[7] A. Birkert, S. Haage, M. Straub, Umformtechnische Herstellung komplexer Karosserieteile, first ed., Springer Vieweg, Berlin, (2013).

DOI: 10.1007/978-3-662-46038-2

Google Scholar

[8] J. Gösling, Metamodell unterstützte Simulation und Kompensation von Rückfederungen in der Blechumformung, Dissertation, TU Dortmund, Germany (2010).

Google Scholar

[9] A. Krasovskyy, Verbesserte Vorhersage der Rückfederung bei der Blechumformung durch weiterentwickelte Werkstoffmodelle, Dissertation, University Karlsruhe, Germany (2005).

Google Scholar

[10] M.D. McKay, R.J. Beckman, W.J. Conover, A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code, Technometrics 21 (1979) 239-245.

DOI: 10.1080/00401706.1979.10489755

Google Scholar

[11] M.H.A. Bonte, Optimisation Strategies for Metal Forming Processes, Dissertation, University of Twente, the Netherlands (2007).

Google Scholar

[12] H.B. Nielsen, DACE, A Matlab Kriging toolbox, http: /www. imm. dtu. dk/hbn/dace/ [22. 01. 14].

Google Scholar

[13] S.N. Lophaven, H. Nielsen, J. Sndergaard, DACE – A MATLAB Kriging Toolbox, Technical Report IMM-TR-2002-12, Technical University of Denmark – Department of Informatics and Mathematical Modelling, Lyngby, Denmark, (2002).

Google Scholar

[14] M.H.A. Bonte, A. van den Boogaard, J. Huétink, A metamodel based optimisation algorithm for metal forming processes, Advanced Methods in Material Forming, Springer, Berlin, (2007).

DOI: 10.1007/3-540-69845-0_4

Google Scholar

[15] D. Ledentsov, A. Düster, W. Volk, M. Wagner, I. Heinle, E. Rank, Model adaptivity for industrial application of sheet metal forming simulation, Finite Elements in Analysis and Design, 46 (2010) 585-600.

DOI: 10.1016/j.finel.2010.02.006

Google Scholar