Hot Deformation Behavior of Ti-6Al-4V Alloy with a Transitional Microstructure in the Isothermal Hot Compression

Article Preview

Abstract:

The hot deformation behavior of Ti-6Al-4V alloy with transitional microstructure over temperature 800°C~950°C and strain rate ranges of 0.001~10s-1 has been studied by Gleeble-3500 hot working simulation testing machine. The flow softening of stress-strain curves is resulted from the spheroidization of transitional microstructure, dynamic recrystallization and superplasticity. Both temperature and strain rate are important factors affecting the deformation behavior. Flow instability induced by adiabatic shear bands occurs at 800-880°Cand 0.32-10 s-1. With the increasing of strain rate and decreasing of temperature, the degree of strain localization increases. The optimum working region of Ti-6Al-4V alloy with a transitional microstructure is at 820-910°C and 0.001-0.1 s-1.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

273-279

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Lijia Hea, A. Dehghan-Manshadi, R.J. Dippenaar. The evolution of microstructure of Ti–6Al–4V alloy during concurrent hot deformation and phase transformation. Materials Science and Engineering A. 549(2012)163-167.

DOI: 10.1016/j.msea.2012.04.025

Google Scholar

[2] T. Seshacharyulu, S.C.M., J.T. Morgan, J.C. Malas, W.G. Frazier Y.V.R.K. Prasad. Hot deformation and microstructural damage mechanisms in extra-low interstitial (ELI) grade Ti–6Al–4V. Materials Science and Engineering A. 279(2000)289–299.

DOI: 10.1016/s0921-5093(99)00173-2

Google Scholar

[3] T. Seshacharyulu, S.C.M., W.G. Frazier, Y.V.R.K. Prasad. Hot working of commercial Ti–6Al–4V with an equiaxed microstructure: materials modeling considerations. Materials Science and Engineering A. 284(2000)184–194.

DOI: 10.1016/s0921-5093(00)00741-3

Google Scholar

[4] Seshacharyulu T, Medeiros S. C, Frazier W. G, Prasad Y.V.R.K. Microstructural mechanisms during hot working of commercial grade Ti-6Al-4V with lamellar starting structure. Materials Science and Engineering. 325(2002) , 325.

DOI: 10.1016/s0921-5093(01)01448-4

Google Scholar

[5] Chan Hee Park1, Kyung-Tae Park, Dong Hyuk Shin, Chong Soo Lee. Microstructural Mechanisms during Dynamic Globularization of Ti-6Al-4V Alloy. Materials Transactions. 10(2008) 2196-2200.

DOI: 10.2320/matertrans.l-mra2008832

Google Scholar

[6] Mei ZHAN, Qiaoling WANG, Dong HAN, He YANG. Geometric precision and microstructure evolution of TA15 alloy by hot shear spinning. Transactions of Nonferrous Metals Society of China. 23(2013)1617-1627.

DOI: 10.1016/s1003-6326(13)62639-4

Google Scholar

[7] J.L.W. Warwick, N.G. Jones, I. Bantounas, M. Preuss, D. Dye. In situ observation of texture and microstructure evolution during rolling and globularization of Ti–6Al–4V. Acta Materialia. 61(2013)1603-1615.

DOI: 10.1016/j.actamat.2012.11.037

Google Scholar

[8] Shibayan Roy, Satyam Suwas. The influence of temperature and strain rate on the deformation response and microstructural evolution during hot compression of a titanium alloy Ti–6Al–4V–0. 1B. Journal of Alloys and Compounds, 548(2013)110-125.

DOI: 10.1016/j.jallcom.2012.08.123

Google Scholar

[9] Wang Min, Guo Hongzhen. Study on superplasticity and fine-grained of TC4 alloy. Journal of Plasticity Engineering. 15(2008)155-158.

Google Scholar

[10] Xue Chao, Hu Jianjun, Chen Guoqing, Zhou Wenlong, Zhang Jiuwen. Recovery and Recrystallization Behavior of Ti6Al4V Alloys after Cold Deformation. Rare Metal Materials and Engineering. 41(2012)472-476.

Google Scholar

[11] A.B. Li, L.J. Huang, Q.Y. Meng, L. Geng, X.P. Cui. Hot working of Ti–6Al–3Mo–2Zr–0. 3Si alloy with lamellar α + β starting structure using processing map. Mater. Des. 30 (2009)1625–1631.

DOI: 10.1016/j.matdes.2008.07.031

Google Scholar

[12] S.L. Semiatin, V. Seetharaman, I. Weiss. Flow behavior and globalarization kinetics during hot working of Ti-6Al-4V with a colony alpha microstructure[J]. Mater Sci Eng A, 1999, 263: 257-271.

DOI: 10.1016/s0921-5093(98)01156-3

Google Scholar

[13] Wenwen Peng, W. Z., Qingjiang Wang, Qinyang Zhao, Hanqing Yu. Effect of processing parameters on hot deformation behavior and microstructural evolution during hot compression of as-cast Ti60 titanium alloy. Materials Science & Engineering A. 593 (2014).

DOI: 10.1016/j.msea.2013.07.086

Google Scholar

[14] Murty S V S N, Rao B N, Kashyap B P. Instability criteria for hot deformation of materials. International Materials Reviews. 45(2000)15 -26.

DOI: 10.1179/095066000771048782

Google Scholar

[15] Prasad Y V R K, Seshacharyulu T. Processing maps for hot working of titanium alloys. Materials Science and Engineering A. 243(1998)82-88.

DOI: 10.1016/s0921-5093(97)00782-x

Google Scholar

[16] V. Gopala Krishna, Y.V.R.K. Prasad, N.C. Birla, G. Sambasiva Rao. Processing map for the hot working of near-α titanium alloy 685. Journal of Materials Processing Technology. 71(1997)377-383.

DOI: 10.1016/s0924-0136(97)00102-7

Google Scholar

[17] S.V.S. Narayana Murty, B. Nageswara Rao. On the flow localization concepts in the processing maps of IN718. Materials Science and Engineering A. 267(1999)159-161.

DOI: 10.1016/s0921-5093(99)00122-7

Google Scholar

[18] Y.V.R.K. Prasad, T. Seshacharyulu, S.C. Medeiros, W.G. Frazier. Infuence of oxygen content on the forging response of equiaxed (α+β) preform of Ti-6Al-4V: commercial vs. ELI grade, Journal of Materials Processing Technology. 108 (2001) 320-327.

DOI: 10.1016/s0924-0136(00)00832-3

Google Scholar