[1]
Skotnicová I, Galda Z, Tymová P, Lausová L. Experimental Measurements and Numerical Simulations of Dynamic Thermal Performance of External Timber Frame Wall. Advanced Materials Research. 2014; vol. 899, pp.126-130.
DOI: 10.4028/www.scientific.net/amr.899.126
Google Scholar
[2]
Horák P, Pavel A, Ambrožová I. A New Type of Heat Exchanger for Ventilation in Buildings with Nearly-Zero Energy Consumption. Advanced Materials Research. 2014; vol. 899, pp.231-234. DOI: 10. 4028/www. scientific. net/AMR. 899. 231.
DOI: 10.4028/www.scientific.net/amr.899.231
Google Scholar
[3]
Lahuta, H., Skotnicová, I. Dynamic thermal performance of building structures in experimental lightweight timber-frame passive house (2013).
DOI: 10.5593/sgem2013/bf6/s26.008
Google Scholar
[4]
Mec P, Murínová T, Kubečka K. Possibilities of Thermal Analysis for the Evaluation of Construction Materials. Advanced Materials Research. 2014; vol. 899, pp.425-430. DOI: 10. 4028/www. scientific. net/AMR. 899. 425.
DOI: 10.4028/www.scientific.net/amr.899.425
Google Scholar
[5]
Uvízlová M, Bečkovská T. The Transition of the Water Steam through the Composition of the Diffusive Closed Circumferential Wall of the Wooden House with the Proper and Improper Realization of Vapor Barrier. Advanced Materials Research. 2014; vol. 899, pp.446-449.
DOI: 10.4028/www.scientific.net/amr.899.446
Google Scholar
[6]
Ďurica P, Ďuriníková M, Ponechal R, Štaffenová D, Štúňová M. Thermal Properties of Selected Lightweight Wooden Walls and Windows in the Regime of Long Time Testing. Advanced Materials Research. 2014; vol. 899, pp.450-456.
DOI: 10.4028/www.scientific.net/amr.899.450
Google Scholar
[7]
Martiník L, Drastichová V, Horák J, Jankovská Z, Kubesa P. Evaluation of Possible Use of Foliage as a Fuel for Small Combustion Equipment. Advanced Materials Research. 2014; vol. 899, pp.218-221. DOI: 10. 4028/www. scientific. net/AMR. 899. 218.
DOI: 10.4028/www.scientific.net/amr.899.218
Google Scholar
[8]
Vlček P, Kubečka K, Kubečková D, Vaculíková H. Defects of Insulation Systems and their Negative Effect on the Accumulation and Energy Saving. Advanced Materials Research. 2013; vol. 649, pp.143-146.
DOI: 10.4028/www.scientific.net/amr.649.143
Google Scholar
[9]
Sevčíková H, Rykalová E, Fabian R. Comparison of the Impact of the Ventilation Ducts on Thermal Properties of the Exterior Walls. Advanced Materials Research. 2014; vol. 899, pp.241-244. DOI: 10. 4028/www. scientific. net/AMR. 899. 241.
DOI: 10.4028/www.scientific.net/amr.899.241
Google Scholar
[10]
Kraus M, Černá M, Hrubá B, Součková B, Kubečková D. Influence of Building Materials on Building Airtightness. Applied Mechanics and Materials. 2013; vol. 372, pp.195-198. DOI: 10. 4028/www. scientific. net/AMM. 372. 195.
DOI: 10.4028/www.scientific.net/amm.372.195
Google Scholar
[11]
Teslík J, Zdražilová N, Vodičková M. Air-Tightness and Acoustic Properties of SuperAdobe System. Advanced Materials Research. 2014; vol. 899, pp.365-368. DOI: 10. 4028/www. scientific. net/AMR. 899. 365.
DOI: 10.4028/www.scientific.net/amr.899.365
Google Scholar
[12]
Katunský D, Nemec M, Kamenský M. Airtightness of Buildings in Slovakia. Advanced Materials Research. 2013; vol. 649, pp.3-6. DOI: 10. 4028/www. scientific. net/AMR. 649. 3.
DOI: 10.4028/www.scientific.net/amr.649.3
Google Scholar