Thickening Carbon Dioxide by Designing New Block Copolymer

Article Preview

Abstract:

In a previous work researchers found that fluorinated acrylate (PHFDA)/styrene (PSt)/ sulfonated styrene (S) copolymer can enhance the viscosity of carbon dioxide (CO2) by factors greater than 100 at concentrations of 5 wt %. To further improve the efficiency of this copolymer, we apply the dissipative particle dynamics (DPD) method to investigate the link between copolymer molecular structure and the solution rheology. Results show that sulfonated copolymer molecules combine with each other and create self-assembly structures, which greatly thicken liquid CO2. We conclude that we should increase the sulfonation degree on the premise of a reasonable solubility. Using a further dissolving experiment, we finally fix the mole fraction of PHFDA, PSt and S on 60%, 24% and 16%, respectively. We test the viscosity of the improved copolymer with rheometer, results show that it can increase the solution viscosity 180-fold relative to neat CO2 at 334K and 28 MPa with a concentration of 2.5 wt %.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

20-24

Citation:

Online since:

August 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Shi, Z. Huang, S. Kilic, J. Xu, R.M. Enick, E.J. Beckman, A.J. Carr, R.E. Melendez and A.D. Hamilton: Science Vol. 286 (1999), p.1540.

Google Scholar

[2] J.M. DeSimone, E.E. Maury, Y.Z. Menceloglu, J.B. McClain, T.J. Romack and J.R. Combes: Science Vol. 265 (1994), p.356.

DOI: 10.1126/science.265.5170.356

Google Scholar

[3] K.P. Johnston, K.L. Harrison, M.J. Clarke, S.M. Howdle, M.P. Heitz, F.V. Bright, C. Carlier and T.W. Randolph: Science Vol. 271 (1996), p.624.

DOI: 10.1126/science.271.5249.624

Google Scholar

[4] T.A. Hoefling, R.R. Beitle, R.M. Enick and E.J. Beckman: Fluid Phase Equilib. Vol. 83 (1993), p.203.

DOI: 10.1016/0378-3812(93)87023-t

Google Scholar

[5] S.Y. Zhang, Y.H. She, Y.A. Gu: J. Chem. Eng. DATA Vol. 56 (2011), p.1069.

Google Scholar

[6] S. Cummings, K. Trickett, R. Enick, J. Eastoe: Phys. Chem. Chem. Phys. Vol. 13 (2011), p.1276.

DOI: 10.1039/c003856c

Google Scholar

[7] Z.H. Huang, C.M. Shi, J.H. Xu, S. Kilic, R.M. Enick and E.J. Beckman: Macromolecules Vol. 33 (2000), p.5437.

Google Scholar

[8] L. Rekvig, M. Kranenburg, J. Vreed, B. Hafskjold and B. Smitt: Langmuir Vol. 19 (2003), p.8195.

Google Scholar

[9] V.V. Ginzburg, K. Chang, P.K. Jog, A.B. Argenton and L.R. Rakesh: J. Phys. Chem. B Vol. 115 (2011), p.4654.

Google Scholar

[10] E.S. Boek, P.V. Coveney: Phys. Rev. E Vol. 55 (1997), p.3124.

Google Scholar

[11] R.D. Groot, P.B. Warren: J. Chem. Phys. Vol. 107(1997), p.4423.

Google Scholar