A Molecular Dynamics Study of Fe Adatom Diffusion on Different Sized Fe Nanoparticles

Article Preview

Abstract:

The diffusion behaviors of Fe adatom on Fe nanoparticles with three different sizes have been explored by molecular dynamics (MD) simulation. The activation energies and pre-exponential factors are extracted from the Arrhenius relation. The MD simulation shows that the hopping, exchange and direct/indirect crossing mechanisms contribute to the diffusion of Fe adatom on Fe nanoparticles and the diffusion behaviors do not show a significant nanosize effect.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

30-33

Citation:

Online since:

September 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. M. Ponder, J. G. Darab, J. Bucher, D. Caulder, I. Craig , L. Davis,  N. Edelstein,  W. Lukens,  H. Nitsche,  L. Rao,  D. K. Shuh  and T. E. Mallouk: Chem. Mater. Vol. 13 (2001), p.479.

DOI: 10.1021/cm000288r

Google Scholar

[2] T. Big and, S. J. Judd: Environ. Technol. Vol. 21 (2000), p.661.

Google Scholar

[3] D. L. Huber, Small Vol. 1 (2005), p.482.

Google Scholar

[4] J. Carvell, E. Ayieta, A. Gavrin, R. Cheng, V. R. Shah and P. Sokol: J. Appl. Phys. Vol. 107 (2010), p.103913.

Google Scholar

[5] J. T. Nurmi, P. G. Tratnyek, V. Sarathy, D. R. Baer, J. E. Amonette, K. Pecher, C. M. Wang, J. C. Linehan, D. W. Matson, R. L. Penn and M. D. Driessen: Environ. Sci. Technol. Vol. 39 (2005), p.1221.

DOI: 10.1021/es049190u

Google Scholar

[6] M. Dickinson and T. B. Scott: J. Nanopart. Res. Vol. 13 (2011), p.3699.

Google Scholar

[7] M. Dickinson, T. B. Scott, R. A. Crane, R. J. Barnes and G. M. Hughes: J. Nanopart. Res. Vol. 12 (2010), p. (2081).

Google Scholar

[8] T. B. Scott, M. Dickinson, R. A. Crane, O. Riba, G. M. Hughes and G. C. Allen: J. Nanopart. Res. Vol. 12 (2010), p.1765.

Google Scholar

[9] H. Jabeen, V. Chandra, S. Jung, J. W. Lee, K. S. Kim and S. B. Kim: Nanoscale Vol. 3 (2011), p.3583.

Google Scholar

[10] W. C. Lin, H. Y. Chang, Y. Y. Lin, Y. C. Hu, C. H. Hsu and C. C. Kuo: J. Appl. Phys. Vol. 107 (2010), p.014301.

Google Scholar

[11] N. Ha Nguyen, R. Henning and J. Z. Wen: J. Nanopart. Res. Vol. 13 (2011), p.803.

Google Scholar

[12] T. Shen, Y. Q. Wu and X. G. Lu: J. Mol. Mode. Vol. 19 (2013), p.751.

Google Scholar

[13] K. C. Huang and S. H. Ehrman: Langmuir Vol. 23 (2007), p.1419.

Google Scholar

[14] D. Farrell, S. A. Majetich and J. P. Wilcoxon: J. Phys. Chem. B Vol. 107 (2003), p.11022.

Google Scholar

[15] W. Hu: Proc. Int. Conf. on New Frontiers of Process Science and Engineering in Advanced Materials, 14th IKETANI Conf. (Kyoto, Japan 2004).

Google Scholar

[16] M. S. Daw and M. I. Baskes: Phys. Rev. B Vol. 29 (1984), p.6443.

Google Scholar

[17] D. Chen, W. Hu, J. Yang and L. Sun: J. Phys.: Condens. Matter. Vol. 19 (2007), p.446009.

Google Scholar

[18] M. P. Allen and D. J. Tildesley: Computer Simulation of Liquids (Clarendon Oxford, 1987).

Google Scholar