The Migration Behaviors of Individual Fe Adatom on Fe Nanoparticle

Article Preview

Abstract:

The migration behaviors of Fe adatom on Fe nanoparticles have been explored by the nudged elastic band (NEB) method. We take nanoparticle consisting of 2465 atoms as an example to illustrate the energy barriers and the migration pathways of Fe adatom on Fe nanoparticle. For the adatom at the three typical kinds of locations, the hopping mechanism is more favorable with the lowest barriers and the exchange mechanism requires relatively higher energies. For the single adatom far away from the interface region, a single adatom on each nanoparticle facet follows a migration behavior similar to that on a bcc surface. In the interface region, there is a competition between the direct crossing mechanism and the indirect crossing mechanism. In addition, the locations have obvious influences on the migration behaviors of the adatom and the effects are to some extent restricted by the migration mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

34-39

Citation:

Online since:

September 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Goldstein and L. F. Greenlee: J. Nanopart. Res. Vol. 14 (2012), p.760.

Google Scholar

[2] T. Vystavel, G. Palasantzas, S. A. Koch, J. Th M. De Hosson: Appl. Phys. Lett. Vol. 82 (2003), p.197.

Google Scholar

[3] W. Hu: Proc. Int. Conf. on New Frontiers of Process Science and Engineering in Advanced Materials, 14th IKETANI Conf. (Kyoto, Japan 2004).

Google Scholar

[4] M. S. Daw and M. I. Baskes: Phys. Rev. B Vol. 29 (1984), p.6443.

Google Scholar

[5] G. Henkelman and H. Jonsson: J. Chem. Phys. Vol. 113 (2000), p.9978.

Google Scholar

[6] F. Gupta1, A. Pasturel and G. Brillant: Phys. Rev. B Vol. 81 (2010), p.014110.

Google Scholar

[7] E. Bruno, S. Mirabella, G. Scapellato, G. Impellizzeri, A. Terrasi, F. Priolo, E. Napolitani, D. De Salvador, M. Mastromatteo and A. Carnera: Phys. Rev. B Vol. 80 (2009), p.033204.

DOI: 10.1103/physrevb.80.033204

Google Scholar

[8] D. Chen, W. Hu, J. Yang, H. Deng, L. Sun and F. Gao: Eur. Phys. J. B Vol. 68 (2009), p.479.

Google Scholar

[9] J. Yang, W. Hu and J. Tang: Eur. Phys. J. B Vol. 78 (2010), p.315.

Google Scholar

[10] D. Chen, W. Hu, F. Gao, H. Deng and L. Sun: Eur. Phys. J. B Vol. 80 (2011), p.31.

Google Scholar

[11] D. Chen, F. Gao, H. Deng, B. Liu, W. Hu, and X. Sun: Int. J. Mod. Phys. B Vol. 28 (2014), p.1450120.

Google Scholar

[12] D. Chen, W. Hu, J. Yang and L. Sun: J. Phys.: Condens. Matter Vol. 19 (2007), p.446009.

Google Scholar