[1]
Moumen;T. El-Melegy; Senior Member; 2013 inIEEE TRANSACTIONS ON NEURAL NETWORKS ANDLEARNIN SYSTEMS, Ranom Sampler M-Estimator Algorithm With Sequential Probability Ratio Test for Robust Function Approximation via Feed-Forward Neural Networks, 24(7): p.1074.
DOI: 10.1109/tnnls.2013.2251001
Google Scholar
[2]
Dongsheng Guo; Yunong Zhang Sun; 2012 in IEEE Computational Intelligence Magazine, Novel Recurrent Neural Network for Time-Varying ProblemsSolving. 7(4); p.61~ 65.
DOI: 10.1109/mci.2012.2215139
Google Scholar
[3]
Émilie Chouzenoux; Saïd Moussaoui; Jérôme Idier; François Mariette; 2010 inIEEE TRANSACTIONSON SIGNAL PROCESSING, Efficient Maximum Entropy Reconstruction of Nuclear Magnetic Resonance T1-T2Spectra, 58(12): p.6040~6051.
DOI: 10.1109/tsp.2010.2071870
Google Scholar
[4]
Hojin Kim; Tae-Suk Suh; Rena Lee; Lei Xi- ng1; Ruijiang Li; 2012 inPhysics in Medicineand Biology, Efficient IMRT inverse planning with a new L1-solver: template for first-order conic solver, 57(13): pp.4139-4153.
DOI: 10.1088/0031-9155/57/13/4139
Google Scholar
[5]
Epanomeritakis; V Akc¸elik; O Ghattas; J Bielak; 2008 inInverse Problems, A Newton-CG method for large-scale three-dimensional elastic full-waveform seismic inversion, 24(3): p.1~25.
DOI: 10.1088/0266-5611/24/3/034015
Google Scholar
[6]
Wei-Tao Zhang; Shun-Tian Lou; Da-Zheng Feng; 2014 inIEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, Adaptive Quasi-Newton Algorithm for Source Extraction via CCA Approach, 25(4): p.677~689.
DOI: 10.1109/tnnls.2013.2280285
Google Scholar
[7]
MdZulfiquarAliBhotto; Andreas Antoniou; 2010 inIEEE TRANSACTIONS ON CIRCUITS AND SYSTEMSI: REGULAR PAPERS, ImprovedQuasi-NewtonAdaptive-Filtering Algorithm, 58(7): p.2109~2119.
Google Scholar
[8]
Md. Zulfiquar Ali Bhotto; Andreas Antoni- ou; Antoniou; 2011 inIEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, Robust Quasi-Newton Adaptive Filtering Algorithms, 58(8): p.537~541.
DOI: 10.1109/tcsii.2011.2158722
Google Scholar
[9]
Shan Ouyang ; Tan Lee P.C. Ching; 2007 inDigital Signal Processing: A Review Journal, A poweer-based adaptive method for eigenanalysis without square-root operations, 17(1): pp.209-224.
DOI: 10.1016/j.dsp.2006.02.003
Google Scholar
[10]
Huai-Ning Wu; Biao Luo; 2012 inIEEE TRANSSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, Neural Network Based Online Simultaneous Policy Update Algorithm for Solving the HJI Equation in Nonlinear H∞ Control, 23(12): p.1884~1895.
DOI: 10.1109/tnnls.2012.2217349
Google Scholar
[11]
Huanhuan Chen; Xin Yao; 2009 inIEEE TRANSACTIO- NS ON NEURAL NETWORKS, Regularized Negative Correlation Learning for Neural Ne- twork Ensembles, 20(12): p.1962~(1978).
DOI: 10.1109/tnn.2009.2034144
Google Scholar
[12]
Kun Qiu; AleksandarDogandzic; 2010 inIEEE TRANSACTIONS ON SIGNALPROCESSING, Variance-Component Based Sparse Signal Reconstruction and Model Selection, 58(6): p.2935~2951.
DOI: 10.1109/tsp.2010.2044828
Google Scholar
[13]
K. Z. Mao; 2004 inIEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, Feature Subset Selection for Support Vector Machines Through Discriminative Function Pruning Analysis, 34(1): p.60~67.
DOI: 10.1109/tsmcb.2002.805808
Google Scholar
[14]
Puyin Liu; Hongxing Li; 2004 inIEEE TRANSACTIONS ON NEURALNETWORKS, Efficient Learning Algorithms for Three-Layer Regular Feedforward Fuzzy Neural Networks, 15(3): p.545~558.
DOI: 10.1109/tnn.2004.824250
Google Scholar
[15]
Chun-Lu Zhang; 2005 inInternational Journal of Refrigeration, Generalized correlation of refrigerant mass flow rate through adiabatic capillary tubes using artificial neural networks, 28(4): p.506~514.
DOI: 10.1016/j.ijrefrig.2004.11.004
Google Scholar
[16]
Branko Soucek; IRIS Group. 1992 Fast Learning and Invariant Object Recognition. London: John Wiley & Sons, Inc.
Google Scholar