[1]
H. Kim, K. C. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, and K. Lee, Internet traffic classification demystified: myths, caveats, and the best practices, in Proceedings of the 2008 ACM CoNEXT conference, 2008, p.11.
DOI: 10.1145/1544012.1544023
Google Scholar
[2]
T. T. Nguyen and G. Armitage, A survey of techniques for internet traffic classification using machine learning, Communications Surveys & Tutorials, IEEE, vol. 10, pp.56-76, (2008).
DOI: 10.1109/surv.2008.080406
Google Scholar
[3]
A. Callado, C. Kamienski, G. Szabó, B. Gero, J. Kelner, S. Fernandes, et al., A survey on internet traffic identification, Communications Surveys & Tutorials, IEEE, vol. 11, pp.37-52, (2009).
DOI: 10.1109/surv.2009.090304
Google Scholar
[4]
J. Zhang, C. Chen, Y. Xiang, W. Zhou, and Y. Xiang, Internet traffic classification by aggregating correlated naive bayes predictions, Information Forensics and Security, IEEE Transactions on, vol. 8, pp.5-15, (2013).
DOI: 10.1109/tifs.2012.2223675
Google Scholar
[5]
E. Rocha, P. Salvador, and A. Nogueira, A real-time traffic classification approach, in Internet Technology and Secured Transactions (ICITST), 2011 International Conference for, 2011, pp.620-626.
Google Scholar
[6]
C. Beşiktaş and H. A. Mantar, Real-time traffic classification based on cosine similarity using sub-application vectors, in Traffic Monitoring and Analysis, ed: Springer, 2012, pp.89-92.
DOI: 10.1007/978-3-642-28534-9_10
Google Scholar
[7]
M. S. Aliakbarian, A. Fanian, F. S. Saleh, and T. A. Gulliver, Optimal supervised feature extraction in internet traffic classification, in Communications, Computers and Signal Processing (PACRIM), 2013 IEEE Pacific Rim Conference on, 2013, pp.102-107.
DOI: 10.1109/pacrim.2013.6625457
Google Scholar
[8]
N. Sengupta, J. Sen, J. Sil, and M. Saha, Designing of on line intrusion detection system using rough set theory and Q-learning algorithm, Neurocomputing, vol. 111, pp.161-168, (2013).
DOI: 10.1016/j.neucom.2012.12.023
Google Scholar
[9]
Y. Li, J. Xia, S. Zhang, J. Yan, X. Ai, and K. Dai, An efficient intrusion detection system based on support vector machines and gradually feature removal method, Expert Systems with Applications, vol. 39, pp.424-430, (2012).
DOI: 10.1016/j.eswa.2011.07.032
Google Scholar
[10]
S. -W. Lin, K. -C. Ying, C. -Y. Lee, and Z. -J. Lee, An intelligent algorithm with feature selection and decision rules applied to anomaly intrusion detection, Applied Soft Computing, vol. 12, pp.3285-3290, (2012).
DOI: 10.1016/j.asoc.2012.05.004
Google Scholar
[11]
A. Das and R. B. Nayak, A divide and conquer feature reduction and feature selection algorithm in KDD intrusion detection dataset, in Sustainable Energy and Intelligent Systems (SEISCON 2012), IET Chennai 3rd International on, 2012, pp.1-4.
DOI: 10.1049/cp.2012.2241
Google Scholar
[12]
E. Hjelmvik and W. John, Breaking and improving protocol obfuscation, Chalmers University of Technology, Tech. Rep, vol. 123751, (2010).
Google Scholar