Interval Banzhaf Value for Cooperative Interval Games on Augmenting Systems

Article Preview

Abstract:

This paper focuses on the Banzhaf value for cooperative games where the set of players is restraint on augmenting systems and the coalition values are compact intervals of real numbers. The interval Banzhaf value for cooperative interval games on augmenting systems is put forward on the basis of corresponding axiomatic system and operations of interval numbers. Moreover, some properties of the interval Banzhaf value are given. Finally, a practical example is offered to illustrate the validity and feasibility of this method on these kinds of cooperative interval games.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1030-1032)

Pages:

1726-1732

Citation:

Online since:

September 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Owen G. Multilinear extensions of games[J]. Management Sciences, 1971, 18(5): 64-79.

Google Scholar

[2] Peleg B. On the reduced game property and its converse[J]. International Journal of Games Theory, 1989, 15(3): 187-200.

Google Scholar

[3] Bilbao J M, Ordonez M. Axiomatizations of the Shapley value for games on augmenting systems[J]. European Journal of Operational Research, 2009, 196(3): 1008-1014.

DOI: 10.1016/j.ejor.2008.04.028

Google Scholar

[4] Branzei R, Alparslan Gök S Z, Branzei O. Cooperative games under interval uncertainty: on the convexity of the interval undominated cores[J]. Central European Journal of Operations Research, 2011, 19(4): 523-532.

DOI: 10.1007/s10100-010-0141-z

Google Scholar

[5] Alparslan Gök S Z, Branzei R, Tijs S. The interval Shapley value: an axiomatization[J]. Central European Journal of Operations Research, 2010, 18(2): 131-140.

DOI: 10.1007/s10100-009-0096-0

Google Scholar

[6] Alparslan Gök S Z, Miquel S, Tijs S. Cooperation under interval uncertainty. Mathematical Methods of Operations Research, 2009, 69(1): 99-109.

DOI: 10.1007/s00186-008-0211-3

Google Scholar

[7] Bilbao J M. Cooperative games under augmenting systems, SIAM Journal of Discrete Mathematics, 2003, 17: 122–133.

DOI: 10.1137/s0895480102402745

Google Scholar

[8] Gilles R P, Owen G, van den Brink R. Games with permission structures: the conjunctive approach[J]. International Journal of Game Theory, 1991, 20(3): 277- 293.

DOI: 10.1007/bf01253782

Google Scholar

[9] Bilbao J M. Axioms for the Shapley value on convex geometries[J]. European Journal of Operational Research, 1998, 110(2): 368-376.

DOI: 10.1016/s0377-2217(97)00263-4

Google Scholar

[10] Bilbao J M, Edelman P H. The Shapley value on convex geometries[J]. Discrete Applied Mathematics, 2000, 103(1-3): 33-40.

DOI: 10.1016/s0166-218x(99)00218-8

Google Scholar

[11] W. Bossert, J. Derks, H. Peters. Efficiency in uncertain cooperative games. Math. Soc. Sci. 2005, 50(1): 12-23.

DOI: 10.1016/j.mathsocsci.2003.09.010

Google Scholar