Self-Assembled Core-Shell Fe3O4@SiO2 Nanoparticles with High Magnetic Sensitivity from Electrospun Fibers

Article Preview

Abstract:

Nanofibers composed of the hydrophilic polymer polyvinylpyrrolidone K90 (PVP), cetyltrimethylammonium bromide (CTAB), tetraethyl orthosilicate (TEOS) and Fe3O4 were fabricated using an electrospinning process. As a result of the templating and confinement properties of the nanfibers, silica coated magnetite (Fe3O4@SiO2) core-shell nanoparticles (NPs) with high magnetic sensitivity were spontaneously formed through molecular self-assembly when the fibers were added to 80% aqueous ethanol (PH=9.0). The typical saturation magnetization of the Fe3O4@SiO2 composite particles is up to 43.8 emu/g, with superparamagnetic properties being observed at room temperature. Since the nanoparticles have high magnetic sensitivity and are prepared via a facile and convenient strategy, they have much promise in a range of practical applications.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1033-1034)

Pages:

1068-1071

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Liu, S. Z. Qiao, Q. H. Hu, G. Q. Lu: Small Vol. 7 (2011), p.425.

Google Scholar

[2] S. Santra, R. Tapec, N. Theodoropoulou, J. Dobson, A. Hebard, W. H. Tan: Langmuir Vol. 17 (2001), p.2900.

DOI: 10.1021/la0008636

Google Scholar

[3] W. Stöber, A. Fink, E. Bohn: J. Colloid Interface Sci. Vol. 26 (1968), p.62.

Google Scholar

[4] Y. Lu; Y. D. Yin, B. T. Mayers, Y. N. Xia: Nano Letters Vol. 2 (2002), p.183.

Google Scholar

[5] Y. K. Sun, L. Duan, Z. R. Guo, D. M. Yun, M. Ma, L. Xu, Y. Zhang, N. Gu: J. Magn. Mater. Vol. 285 (2005), p.65.

Google Scholar

[6] D. Yang, J. Hu, S. Fu: J. Phys. Chem. C Vol. 113 (2009), p.7646.

Google Scholar

[7] M. G. McKee: Science Vol. 311 (2006), p.353.

Google Scholar

[8] X. Lu, C. Wang, Y. Wei: Small Vol. 5 (2009), p.2349.

Google Scholar

[9] D. G. Yu, C. Branford-White, G. R. Williams, S. W. A. Bligh, K. White, L. M. Zhu, N. P. Chatterton: Soft Matter Vol. 7 (2011), p.8239.

DOI: 10.1039/c1sm05961k

Google Scholar

[10] D. G. Yu, L. M. Zhu, S. W. A. Bligh, C. Branford-White, K. N. White: Chem. Commun. Vol. 47 (2011), p.1216.

Google Scholar

[11] H. Hess: Soft Matter Vol. 2 (2006), p.669.

Google Scholar

[12] Y. S. Kang, S. Risbud, J. F. Rabolt, P. Stroeve: Chem. Mater. Vol. 8 (1996), p.2209.

Google Scholar

[13] J. Bai, Y. X. Li, C. Q. Zhang, X. F. Liang, Q. B. Yang: A-Physicochem. Eng. Asp. Vol. 329 (2008), p.165.

Google Scholar

[14] M. Ahmad, C. F. Pan, Z. X. Luo, J. Zhu: J. Phys. Chem. C Vol. 114 (2010), p.9308.

Google Scholar

[15] H. Wang, Y. Li, L. Sun, Y. Li, W. Wang, S. Wang, S. Xu, Q. Yang:J. Colloid. Interf. Sci. Vol. 350 (2010), p.396.

Google Scholar

[16] M. Miyauchi, T. J. Simmons, J. Miao, J. E. Gagner, Z. H. Shriver, U. Aich,; J. S. Dordick, R. J. Linhard: ACS. Appl. Mater. Inter Vol. 3 (2011), p. (1958).

DOI: 10.1021/am200187x

Google Scholar