[1]
Tian Jinglong. Application status of dry dust removal technology for blast furnace gas[J]. Energy For Metallurgical Industry, 2007,26(5):3-7.
Google Scholar
[2]
Dang Donghong, Hao laisen. Discussion on Corrosion of Blast Furnace Gas Dusted by Dry Process[J]. Metallurgical Power. 2007, 6(6): 24-26.
Google Scholar
[3]
Yan hongmei, Liu xiangzhao. Deposit research on TRT generator set of the blast furnace[J]. Industrial Water Treatment. 2011, (5): 91-92.
Google Scholar
[4]
Xu fan, etc. A review on existence and release of chlorine in coal[J]. Coal Conversion. 2001. 24(2):1~5.
Google Scholar
[5]
Frank E. Huggins and Gerald P. Huffman. Chlorine in Coal: an XAFS spectroscopic investigation. Fuel, 1995, 4: 556-559.
DOI: 10.1016/0016-2361(95)98359-m
Google Scholar
[6]
Li shouxin, Yan weiping, Fang lijun. The Mechanism of the High Temperature Chloridization Corrosion on the Heat Transfer Surface of Utility Boiler[J]. Boiler Manufacturing . 1999, (4): 19-23.
Google Scholar
[7]
Bo S, Fritz A. The Ringberg workshop1995onunary data for elements and other end-members of solutions[J]. Reassessmentphad, 1995, 19( 4) : 433 436.
Google Scholar
[8]
Zhang Z J. Reassessmentculationof the properties ofsome metals andalloys[J]. Journal of Physics: Condens Matter, 1998, 10: 495 499.
Google Scholar
[9]
Chase M W. NIST-JANAF Thermochemical Tables ( Fourth Edition Part I)[M]. Gaithersburg: National Institute of Standards and Technology, (1998).
Google Scholar
[10]
FRANDSEN F. Trace elements from coal combustion[D]. Denmark: Technical University of Denmark, 1995, Dec 31: 9-14.
Google Scholar
[11]
Verdone, N., De Filippis, P. Thermodynamic behaviour of sodium and calcium based sorbents in the emission control of waste incinerators [J] . Chemosphere 2004, (54): 975–985.
DOI: 10.1016/j.chemosphere.2003.09.041
Google Scholar