Application of Optical Basicity for Estimation of Viscosity of SiO2-CaO-MgO-Al2O3 System

Article Preview

Abstract:

A viscosity model based on NPL model with the corrected optical basicity is proposed for quaternary SiO2-CaO-MgO-Al2O3 slag system in the present work. The modified Arrhenius type of equation for temperature dependence of slag viscosity is employed. By means of fitting measured viscosity values for slags with basicity from 0.4 to 1.0 and temperature from 1593 to 1803 K, model parameters are optimized against values of optical basicity, which represents both the structure of molten slags and cationic effects. The relationship between model parameters and optical basicity, which is different from NPL model, is obtained. The present model is applied to estimate viscosity values of slag in SiO2-CaO-MgO-Al2O3 system. The comparison between estimated and measured values shows good agreement with a mean deviation of 12%. It proves fully that the present model can express the temperature dependence and composition dependence of viscosity.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1033-1034)

Pages:

811-817

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Sridhar. Estimation models for molten slag and alloy viscosities. JOM, 2002, 54(11): 46-50.

DOI: 10.1007/bf02709750

Google Scholar

[2] J.A. Duffy, M.D. Ingram. Establishment of an optical scale for lewis basicity in inorganic oxyacids, molten salts, and glasses. J. Am. Chem. Soc., 1971, 93(24): 6448-6454.

DOI: 10.1021/ja00753a019

Google Scholar

[3] K.C. Mills, S. Sridhar. Viscosity of ironmaking and steelmaking Slags. Ironmaking and Steelmaking, 1999, 26(4): 262-268.

DOI: 10.1179/030192399677121

Google Scholar

[4] H.S. Ray, S. Pal. Simple method for theoretical estimation of viscosity of oxide melts using optical basicity. Ironmaking and Steelmaking, 2004, 31(2): 125-130.

DOI: 10.1179/030192304225012097

Google Scholar

[5] A. Shankar, M. Görnerup, A.K. Lahiri, etc. Estimation of viscosity for blast furnace type slags. Ironmaking and Steelmaking, 2007, 34 (6): 477-481.

DOI: 10.1179/174328107x17467

Google Scholar

[6] Q.F. Shu, X.J. Hu, K.C. Chou. Application of optical basicity for estimation of physical properties of slags. Proceedings of 2008 national metallurgical physical chemistry. Journal of the Chinese Rare Earth Society, 2008, 26(9): 288-292. (In Chinese).

Google Scholar

[7] C.J.B. Fincham, F.D. Richardson. The behaviour of sulphur in silicate and aluminate melts. Proceedings of the Royal Society of London. Mathematical and Physical Sciences. 1954, 223(1152): 40–62.

DOI: 10.1098/rspa.1954.0099

Google Scholar

[8] G.W. Toop, C.S. Samis. Activities of ions in silicate melts. Trans. Metall. Soc. A. I. M. E., 1962, 224: 878.

Google Scholar

[9] S.B. Wang. Study on the physical properties of molten slag based on the reduction method with controlled oxygen flow. Wuhan University of Science and Technology Master's Degree, 2013: 77-79. (In Chinese).

Google Scholar

[10] K.C. Mills. The structures of silicate melts. NPL report DMM (A), 1991, 43: 1408-1416.

Google Scholar

[11] G. Urbain, Y. Bottinga, P. Richet. Viscosity of liquid silica, silicates and alumino-silicates. Geochimica et Cosmochimica Acta, 1982, 46(6): 1061-1072.

DOI: 10.1016/0016-7037(82)90059-x

Google Scholar

[12] X.J. Hu, Z.S. Ren, G.H. Zhang, etc. A model for estimating the viscosity of blast furnace slags with optical basicity. International Journal of Minerals Metallurgy and Materials, 2012, 19(12): 1088-1092.

DOI: 10.1007/s12613-012-0675-2

Google Scholar

[13] Q.F. Shu. A viscosity estimation model for molten slags in Al2O3-CaO-MgO-SiO2 system. Steel Research International, 2009, 80(2): 107-113.

Google Scholar

[14] K.C. Mills, L. Chapman, A.B. Fox, etc. 6th Int. Conf. Molten Slags, Fluxes and Salts. Stockholm, Sweden-Helsinki, Finland, 2000: 1-16.

Google Scholar

[15] P.V. Riboud, Y. Roux, L. D Lucas, etc. Improvement of continuous casting powders. Fachberichte Hüttenpraxis Metallweiterverarbeitung, 1981, 19: 859-869.

Google Scholar

[16] M.H. Song, Q.F. Shu, S.C. Du. Viscosities of the quaternary Al2O3-CaO-MgO-SiO2 slags. Steel research international, 2011, 82(3): 260-268.

DOI: 10.1002/srin.201000150

Google Scholar

[17] K. Mills. The estimation of slag properties. Short course presented as part of Southern African Pyrometallurgy 2011, 7th of March, (2011).

Google Scholar

[18] H. Kim, H. Matsuura, F. Tsukihashi, etc. Effect of Al2O3 and CaO/SiO2 on the viscosity of calcium-silicate-based slags containing 10 mass pct MgO. Metallurgical and Materials Transactions B, 2013, 44(1): 5-12.

DOI: 10.1007/s11663-012-9759-7

Google Scholar

[19] J.S. Machin, T.B. Yee, D.L. Hanna. Viscosity studies of system CaO-MgO-AI2O3-SiO2: Ⅲ, 35, 45, and 50%SiO2. Journal of the American Ceramic Society, 1952, 35(12): 322-325.

DOI: 10.1111/j.1151-2916.1952.tb13057.x

Google Scholar

[20] T. Iida, H. Sakai, Y. Kita, etc. An equation for accurate prediction of the viscosities of blast furnace type slags from chemical composition. ISIJ International, 2000, 40: S110-S114.

DOI: 10.2355/isijinternational.40.suppl_s110

Google Scholar

[21] K.C. Mills. Viscosities of molten slags. Slag Atlas, 2nd edn., Verlag Stahleisen GmbH, D-Düsseldorf, 1995: 349-401.

Google Scholar

[22] K.C. Mills, L. Chapman, A.B. Fox, etc. Round robin, project on the estimation of slag viscosities. Scandinavian Journal of Metallurgy, 2001, 30: 396-403.

DOI: 10.1034/j.1600-0692.2001.300608.x

Google Scholar