A Method for Prediction of Water Permeability through Polymers

Article Preview

Abstract:

A calculation method for prediction of water permeability through polymers is suggested. An appropriate equation for calculating the activation free energy of permeability is proposed. The method is based on a set of atomic constants associated with the polymer-water interaction energy. The chemical structure of polymers as well as the degree of crystallininty, temperature, and free volume are taken into account. The method is also applicable for polymeric nanocomposites.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1033-1034)

Pages:

939-947

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Park, G.S. Crank. Diffusion in polymers; Academic Press: London, 1968; p.259.

Google Scholar

[2] W.S.W. Ho, K.K. Sirkar. Membrane Handbook; Van Nostrand Reinhold: New York, (1992).

Google Scholar

[3] D.R. Paul, Yu.P. Yampolskii. Polymeric gas separation membranes; CRC Press Boca Raton: Florida, (1994).

Google Scholar

[4] S.A. Reitlinger. Permeability of Polymeric Materials; Khimiya: Moscow, (1974).

Google Scholar

[5] A.L. Iordanskii, O.V. Startsev, G.E. Zaikov. Water transport in synthetic polymers; Nova: New York, (2003).

Google Scholar

[6] G.E. Zaikov, A.L. Iordanskii, V.S. Markin. Diffusion of electrolytes in polymers; VSP: Utrecht, (1988).

Google Scholar

[7] A.L. Iordanskii, T.E. Rudakova, G.E. Zaikov. Interaction of polymers with bioactive and corrosive media; VSP: Utrecht, (1994).

Google Scholar

[8] S.T. Hwang, C.K. Choi, K. Kammermeyer. J. Separation Sci. 1974. 6. 461.

Google Scholar

[9] M. Mulder. Basic principles of membrane technology; Kluwer: Dordrecht, (1996).

Google Scholar

[10] M.C. Porter. Handbook of Industrial Membrane Technology; Noyes Publishing: Oak Ridge, NJ, (1989).

Google Scholar

[11] W.R. Vieth. Diffusion in and through polymers. Principles and applications; Hanser Publishers: Munic, (1991).

Google Scholar

[12] A. Jonquieres, R. Clement, P. Lochon. Progr. Polym. Sci. 2002. 27. 1803.

Google Scholar

[13] R.W. Baker. Ind. Eng. Chem. 2002. 41. 1393.

Google Scholar

[14] J. Huang, R.J. Cranford, T. Matsuura, C. Roy. J. Membr. Sci. 2003. 215. 129.

Google Scholar

[15] T. Gallego-Lizon, Y.S. Ho, L.F. dos Santos. Desalination, 2002, 149, 3.

Google Scholar

[16] A.P. Roberts, B.M. Henry, A.P. Sutton, C.R.M. Grovenor, G.A.D. Briggs, T. Miyamoto, M. Kano, Y. Tsukahara, M. Yanaka. J. Membr. Sci. 2002. 208. 75.

Google Scholar

[17] R.J. Cranford, H. Darmstadt, J. Yang, C. Roy. J. Membr. Sci. 1999. 155. 231.

Google Scholar

[18] K.A. Lokhandwala, S.M. Nadakatti, S.A. Stern. J. Polym. Sci., Part B: Polym. Phys. 1995. 33. 965.

Google Scholar

[19] D.C. Overmann. U.S. Pat. 5, 034, 025 (1991).

Google Scholar

[20] R.A. Rahimzadeh. U.S. Pat. 5, 681, 368 (1997).

Google Scholar

[21] E. Sacher, J.R. Susko. J. Appl. Polym. Sci. 1979. 23. 2355.

Google Scholar

[22] D.R. Paul. Macromol. Symp. 1999. 138. 13.

Google Scholar

[23] J. Huang, R.J. Cranford, T. Matsuura, C. Roy. J. Appl. Polym. Sci. 2002. 85. 139.

Google Scholar

[24] K. Okamoto, N. Tanihara, H. Watanabe, K. Tanaka, H. Kita, A. Nakamura, Y. Kusuki, K. Nakagawa. J. Polym. Sci. Polym. Phys. Ed. 1992. B30. 1223.

DOI: 10.1002/polb.1992.090301107

Google Scholar

[25] T. Watari, J. Fang, X. Guo, K. Tanaka, H. Kita, K. Okamoto. ACS symposium: Advanced materials for membrane separations, 2004, p.253.

DOI: 10.1021/bk-2004-0876.ch017

Google Scholar

[26] D. Rivin, C.E. Kendrick, P.W. Gibson, N.S. Schneider. Polymer. 2001. 42. 623.

Google Scholar

[27] B.P. Tikhomirov, H.B. Hopfenberg, V. Stannett. Macromol. Chem. 1968. 118. 177.

Google Scholar

[28] M. Salame. Proc. of the 164th ACS National Meeting, 1972, p.113.

Google Scholar

[29] M. Salame. Proc TAPPI. Polymers, Laminations and Coating Conf. 1986, p.363.

Google Scholar

[30] A.W. Myers, V. Tammela, V. Stannett, M. Szwarc. Modern Plastics, 1960. 37. 139.

Google Scholar

[31] J.M. Mohr, D.R. Paul. J. Appl. Polym. Sci. 1991. 42. 1711.

Google Scholar

[32] V.T. Stannett, G.R. Ranade, W.J. Koros. J. Membr. Sci. 1982. 10. 219.

Google Scholar

[33] N.A. Plate, A. Bokarev, N. Kaliuszhnyi, Yu. Yampolskii. J. Membr. Sci. 1991. 60. 13.

Google Scholar

[34] V. Stannett, J.L. Williams. J. Polym. Sci., Part C: Polym. Lett. 1965. 10. 45.

Google Scholar

[35] A.A. Askadskii, Yu.I. Matveev. Chemical Structure and Physical Properties of Polymers; Khimia: Moscow, 1983, 248 pp. (Rus).

Google Scholar

[36] A.A. Askadskii. Physical Properties of Polymers. Prediction and Control; Gordon and Breach Science Publishers: Amsterdam, 1996, 336 pp.

Google Scholar

[37] A.A. Askadskii, V.I. Kondrashchenko. Computer-Based Materiology of Polymers. Volume I. Atomic and Molecular Line of Approach; Scientific World: Moscow, 1999, 544 pp. (Rus).

Google Scholar

[38] A.A. Askadskii. Computational Materials Science of Polymers; Cambridge International Science Publishing: Cambridge, 2003, 695 pp.

Google Scholar