Synthesis of Polymeric Schiff Base (PSB) Nanostructural Materials via Interfacial Polymerization

Article Preview

Abstract:

Nanostructural materials of polymeric Schiff base (PSB) have been selectively synthesized via interfacial polymerization (IP) by modifying the polymerization process. The effects of synthesizing methods, catalyst, the monomer concentration and the reaction time on the morphology of PSB nanostructural materials are investigated. The samples are characterized by TEM, FT-IR, UV-Vis, XRD, thermal analysis, and electrical conductivity measurement techniques. The results show that the PSB nanostructural materials, such as nanofilms and-rods, can be obtained via IP. Na+ and NH4+ ions act as shape-regulated agents. Na+ ion can control the growth of PSB nuclei along two-dimension to obtain PSB nanofilms and NH4+ is advantage to the growth of PSB nuclei along one-dimension to obtain PSB nanorods. It is also found that the polymer nanocrystals show high thermal stability and the iodine-doped polymer is a semiconductor material.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 1033-1034)

Pages:

963-969

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Xinyu Zhang, Roch Chan-Yu-King, Anil Jose, Sanjeev K. Manohar. Synthetic Metals 145 23–29 (2004).

Google Scholar

[2] Guo C. X., Cao M. H., Hu C. W. Inorganic Chemistry Communications, 7, 929-931 (2004).

Google Scholar

[3] Lutta S. T., Dong H., Zavalij P. Y., Whittingham M. S. Materials Research Bulletin, 40, 383-393 (2005).

DOI: 10.1016/j.materresbull.2004.10.005

Google Scholar

[4] Xiong S. X., Wang Q., Xia H. S. Materials Research Bulletin, 39, 1569-1580 (2004).

Google Scholar

[5] Huang J. X., Kaner R. B. Journal of the American Chemical Society, 126, 851-855 (2004).

Google Scholar

[6] Beestman G. B., Deming J. M.: Encapsulation by interfacial polycondensation. 4417916, U.S. (1983).

Google Scholar

[7] Sun Q. H., Deng Y. L. Journal of the American Chemical Society, 127, 8274-8275 (2005).

Google Scholar

[8] Arshady R. Journal of Microencapsulation, 6, 13-28 (1989).

Google Scholar

[9] Gupta B., Prakash R. Synthetic Metals, 160, 523-528 (2010).

Google Scholar

[10] Guan H., Fan L. Z., Zhang H. C., Qu X. H. Electrochimica Acta, 56, 964-968 (2010).

Google Scholar

[11] Khuhawar M. Y., Channar A. H., Shah S. W. European Polymer Journal, 34, 133-135 (1998).

Google Scholar

[12] Khuhawar M. Y., Mughal M. A., Channar A. European Polymer Journal, 40, 805-809 (2004).

Google Scholar

[13] Kim F., Song J. H., Yang P. D. Journal of the American Chemical Society, 124, 14316-14317 (2002).

Google Scholar

[14] Yu Y. Y., Chang S. S., Lee C. L., Wang C. R. C. The Journal of Physical Chemistry B, 101, 6661-6664 (1997).

Google Scholar

[15] Pastoriza-Sabtos I., Liz-Marza´n L. M. Nano Letters, 2, 903-905 (2002).

Google Scholar

[16] Chen S. H., Carroll D. L. Nano Letters, 2, 1003-1007 (2002).

Google Scholar

[17] Sun Y. G., Xia Y. N. Science, 298, 2176-2179 (2002).

Google Scholar

[18] Song H. J., Kim F., Connor S., Somorjai G. A., Yang P. D.: The Journal of Physical Chemistry B, 109, 188-193 (2005).

Google Scholar

[19] Kim F., Connor S., Song H., Kuykendall T., Yang P. D.: Cover Picture: Platonic Gold Nanocrystals Angewandte Chemie International Edition. 43, 3673- (2004).

DOI: 10.1002/anie.200454216

Google Scholar

[20] Sau T.K., Murphy C. J. Journal of the American Chemical Society, 126, 8648-8649 (2004).

Google Scholar

[21] Stru¨ber U., Kastner A., Ku¨ppers J. Thin Solid Films, 250, 101-110 (1994).

Google Scholar

[22] Orendorff C. J., Murphy C. J. The Journal of Physical Chemistry B, 110, 3990-3994 (2006).

Google Scholar

[23] Tirkistani F. A. A. Polymer Degradation and Stability. 60, 67-70 (1998).

Google Scholar