Ultrafast Dynamics of Sub-Wavelength Periodic Surface Structuring during Femtosecond Laser Processing of Dielectrics

Article Preview

Abstract:

A femtosecond laser pulse duration is shorter than many physical/chemical characteristic times, which makes it possible to control electron dynamics such as ionizations and electron densities. This study expermetally investigtes the effects of laser fluence on sub-wavelength periodic surface structuring based on ultrafast laser electron dynamics control. A quantum model for the sub-wavelength periodic surface structuring is also proposed, which considers both the wave properties in the photon particle-properties based plasma model for photon-electron interactions and transient localized changes of material properties. It shows that the laser fluence strongly affects the ablation crater shapes. The prediction of ablation crater shape and periodicity is in agreement with experimental data.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

426-431

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Birnbaum, Semiconductor surface damage produced by ruby lasers, J. Appl. Phys. 36 (1965) 3688.

Google Scholar

[2] W. Kautek, P. Rudolph, G. Daminelli, J. Krüger, Phys ico-chemical aspects of femtosecond - pulse - laser - induced surface nanostructures , Appl. Phys. A 81 (2005) 65-70.

DOI: 10.1007/s00339-005-3211-7

Google Scholar

[3] M.Y. Shen, C.H. Crouch, J.E. Carey, E. Mazur, Femtosecond laser-induced formation of submicrometer spikes on silicon in water, Appl. Phys. Lett. 85 (2004) 5694-5696.

DOI: 10.1063/1.1828575

Google Scholar

[4] J. Wang, C. Guo, Ultrafast dynamics of femtosecond laser-induced periodic surface pattern formation on metals, Appl. Phys. Lett. 87 (2005) 251914.

DOI: 10.1063/1.2146067

Google Scholar

[5] G. Daninelli, J. Krüger, W. Kautek, Femtosecond laser interaction with silicon under water confinement , Thin Solid Films 467 (2004) 334-341.

DOI: 10.1016/j.tsf.2004.04.043

Google Scholar

[6] J. Reif, F. Costache, M. Henyk, S.V. Pandelov, Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics, Appl. Surf. Sci. 197-198 (2002) 891-895.

DOI: 10.1016/s0169-4332(02)00450-6

Google Scholar

[7] D. Dufft, A. Rosenfeld, S.K. Das, R Grunwald, J. Bonse, Femtosecond laser-induced periodic surface structures revisited: A comparative study on ZnO, J. Appl. Phys. 105 (2009) 034908.

DOI: 10.1063/1.3074106

Google Scholar

[8] J. Bonse, A. Rosenfeld, J. Krüger, On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses, J. Appl. Phys. 106 (2009) 104910.

DOI: 10.1063/1.3261734

Google Scholar

[9] A. Rosenfeld, M. Rohloff, S. Hömn, J. Krüger, J. Bonse, Formation of laser-induced periodic surface structures on fused silica upon multiple parallel polarized double-femtosecond-laser-pulse irradiation sequences, Appl. Surf. Sci. 258 (2011).

DOI: 10.1016/j.apsusc.2011.09.076

Google Scholar

[10] J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, Laser-induced periodic surface structute. I. Theory, Phys. Rev. B 27 (1983) 1141-1154.

DOI: 10.1103/physrevb.27.1141

Google Scholar

[11] D.C. Emmony, R.P. Howson, L.J. Willis, Laser mirror damage in germanium at 10. 6μm, Appl. Phys. Lett. 23 (1973) 589-590.

Google Scholar

[12] J.F. Young, J.S. Preston H.M. van Driel, J.E. Sipe, Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass, Phys. Rev. B 27 (1983) 1152-1172.

DOI: 10.1103/physrevb.27.1155

Google Scholar

[13] A.M. Ozkan, A.P. Malshe, T.A. Railkar, W.D. Brown, M.D. Shirk, P.A. Molian, Femtosecond laser-induced periodic structure writing on diamond crystals and microclusters, Phys. Rev. Lett. 75 (1999) 3716-3718.

DOI: 10.1063/1.125439

Google Scholar

[14] J. Bonse, H. Sturm, D. Schmidt, W. Kautek, Chemical, morphological and accumulation phenomena in ultrashort-pulse laser ablation of TiN in air, Appl. Phys. A 71 (2000) 657-665.

DOI: 10.1007/s003390000585

Google Scholar

[15] R. Wagner, J. Gottmann, A. Horn, E.W. Kreutz, Formation of subwavelength-laser-induced periodic surface structures by tightly focused femtosecond laser radiation, Proc. SPIE 5662 (2004) 168-172.

DOI: 10.1117/12.596313

Google Scholar

[16] J. Bonse, M. Munz, H. Sturm, Structure formation on the surface of indium phosphide irradiated by femtosecond laser pulses, J. Appl. Phys. 97 (2005) 013538.

DOI: 10.1063/1.1827919

Google Scholar

[17] Y. Dong, P. Molian, Coulomb explosion-induced formation of highly oriented nanoparticles on thin films of 3C-SiC by the femtosecond pulsed laser, Appl. Phys. Lett. 84 (2004) 10-12.

DOI: 10.1063/1.1637948

Google Scholar

[18] J. Gottmann, R. Wagner, Sub-wavelength ripple formation on dielectric and metallic materials induced by tightly focused femto-second laser radiation, Proc. of SPIE 6106 (2006) 61061R.

DOI: 10.1117/12.644560

Google Scholar

[19] J. Wang, C. Guo, Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses, J. Appl. Phys. 100 (2006) 023511.

DOI: 10.1063/1.2214464

Google Scholar

[20] Y.P. Yuan, L. Jiang, X. Li, C. Wang, H. Xiao, Y.F. Lu, H.L. Tsai, Formation mechanisms of sub-wavelength ripples during femtosecond laser pulse train processing of dielectrics, J. Phys. D Appl. Phys. 45 (2012) 175301.

DOI: 10.1088/0022-3727/45/17/175301

Google Scholar

[21] L. Jiang, H. L. Tsai, Plasma modeling for ultrashort pulse laser ablation of dielectrics, J. Appl. Phys. 100 (2006) 023116.

Google Scholar