Facile Hydrothermal Synthesis of a Graphene–Bismuth Oxide Composite and its Photoresponse Performance

Article Preview

Abstract:

Graphene-bismuth oxide composite were fabricated through a facile hydrothermal method. The SEM, XRD, EDS, FTIR were performed to characterize the morphology, composition, structure and surface functional groups. It was found that the Bi2O3 evenly spread on the surface of graphene. What is interesting is that two kinds of bismuth oxide can be generate in an experiment. One is spherical Bi2O3 with a diameter of 1~2 μm, the other is about 40 nm particle-size growed on the surface of the graphene. The possible growth mechanism was discussed. Under UV-pulsed illumination, graphene-Bi2O3 composite electrodes can produce an extracurrent of about 52.92 μA/cm2 under 0.3 V bias voltage, this value is higher than the existing report, indicating potential applications in optoelectronic devices. The possible reasons are explained.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

524-529

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.K. Geim, K.S. Novoselov, The rise of graphene, Nat Mater, 6 (2007) 183-191.

Google Scholar

[2] Yuanbo Zhang, YanWen Tan, Horst L. Stormer, P. Kim., Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, 438 (2005) 201-204.

DOI: 10.1038/nature04235

Google Scholar

[3] Jishan Wu, Wojciech Pisula, K. Müllen, Graphenes as potential material for electronics, Chem. Rev., 107 (2007) 718-747.

DOI: 10.1021/cr068010r

Google Scholar

[4] S.R. Kim, M.K. Parvez, M. Chhowalla, UV-reduction of graphene oxide and its application as an interfacial layer to reduce the back-transport reactions in dye-sensitized solar cells, Chem. Phys. Lett., 483 (2009) 124-127.

DOI: 10.1016/j.cplett.2009.10.066

Google Scholar

[5] Y.H. Ng, A. Iwase, N.J. Bell, A. Kudo, R. Amal, Semiconductor/reduced graphene oxide nanocomposites derived from photocatalytic reactions, Catal. Today, 164 (2011) 353-357.

DOI: 10.1016/j.cattod.2010.10.090

Google Scholar

[6] H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-Graphene Composite as a High Performance Photocatalyst, ACS Nano, 4 (2009) 380-386.

DOI: 10.1021/nn901221k

Google Scholar

[7] S.S. Bhande, R.S. Mane, A.V. Ghule, S. -H. Han, A bismuth oxide nanoplate-based carbon dioxide gas sensor, Scripta Mater., 65 (2011) 1081-1084.

DOI: 10.1016/j.scriptamat.2011.09.022

Google Scholar

[8] A. Cabot, A. Marsal, J. Arbiol, J. Morante, Bi2O3 as a selective sensing material for NO detection, Sensors and Actuators B: Chemical, 99 (2004) 74-89.

DOI: 10.1016/j.snb.2003.10.032

Google Scholar

[9] L. Leontie, M. Caraman, M. Alexe, C. Harnagea, Structural and optical characteristics of bismuth oxide thin films, Surf. Sci., 507 (2002) 480-485.

DOI: 10.1016/s0039-6028(02)01289-x

Google Scholar

[10] L. Leontie, M. Caraman, M. Delibaş, G. Rusu, Optical properties of bismuth trioxide thin films, Mater. Res. Bull., 36 (2001) 1629-1637.

DOI: 10.1016/s0025-5408(01)00641-9

Google Scholar

[11] V. Fruth, A. Ianculescu, D. Berger, S. Preda, G. Voicu, E. Tenea, M. Popa, Synthesis, structure and properties of doped Bi2O3, J. Eur. Ceram. Soc., 26 (2006) 3011-3016.

DOI: 10.1016/j.jeurceramsoc.2006.02.019

Google Scholar

[12] C. Wang, C. Shao, L. Wang, L. Zhang, X. Li, Y. Liu, Electrospinning preparation, characterization and photocatalytic properties of Bi2O3 nanofibers, J. Colloid Interface Sci., 333 (2009) 242-248.

DOI: 10.1016/j.jcis.2008.12.077

Google Scholar

[13] H. Zhang, P. Wu, Y. Li, L. Liao, Z. Fang, X. Zhong, Preparation of bismuth oxide quantum dots and their photocatalytic activity in a homogeneous system, ChemCatChem, 2 (2010) 1115-1121.

DOI: 10.1002/cctc.201000090

Google Scholar

[14] T. Gujar, V. Shinde, C. Lokhande, S. -H. Han, Electrosynthesis of Bi2O3 thin films and their use in electrochemical supercapacitors, J. Power Sources, 161 (2006) 1479-1485.

DOI: 10.1016/j.jpowsour.2006.05.036

Google Scholar

[15] F. -L. Zheng, G. -R. Li, Y. -N. Ou, Z. -L. Wang, C. -Y. Su, Y. -X. Tong, Synthesis of hierarchical rippled Bi2O3 nanobelts for supercapacitor applications, Chem. Commun., 46 (2010) 5021-5023.

DOI: 10.1039/c002126a

Google Scholar

[16] S.M.F. Shaikh, G. Rahman, R.S. Mane, O. -S. Joo, Bismuth oxide nanoplates-based efficient DSSCs: Influence of ZnO surface passivation layer, Electrochim. Acta, 111 (2013) 593-600.

DOI: 10.1016/j.electacta.2013.08.066

Google Scholar

[17] N. -R. Chiou, C.M. Lui, J.J. Guan, L.J. Lee, A.J. Epstein, Growth and Alignment of Polyaniline Nanofibres with Superhydrophobic, Nat. Nanotechnol, 2 (2007) 354-357.

DOI: 10.1038/nnano.2007.147

Google Scholar

[18] N.R. Chiou, A.J. Epstein, Polyaniline Nanofibers Prepared by Dilute Polymerization, Adv. Mater., 17 (2005, 17, 1679–1683) 1679-1683.

DOI: 10.1002/adma.200401000

Google Scholar

[19] H. -W. Wang, Z. -A. Hu, Y. -Q. Chang, Y. -L. Chen, Z. -Q. Lei, Z. -Y. Zhang, Y. -Y. Yang, Facile solvothermal synthesis of a graphene nanosheet–bismuth oxide composite and its electrochemical characteristics, Electrochim. Acta, 55 (2010).

DOI: 10.1016/j.electacta.2010.08.048

Google Scholar

[20] Y. Gao, M. Li, Y. Zhang, X. Wang, F. Xu, J. Guo, Preparation of nano-Bi2O3 by high-frequency plasma, Ordnance Mater. Sci. Eng. , 34 (2012) 90-92.

Google Scholar

[21] YANG YongHui, SUN HongJuan, P. TongJiang, Synthesis and Structural Characterization of Graphene by Oxidation Reduction, Chinese J. Inorg Chem, 26 (2010) 2083-(2090).

Google Scholar

[22] Z. Ai, Y. Huang, S. Lee, L. Zhang, Monoclinic α-Bi2O3 photocatalyst for efficient removal of gaseous NO and HCHO under visible light irradiation, J. Alloys Compd., 509 (2011) 2044-(2049).

DOI: 10.1016/j.jallcom.2010.10.132

Google Scholar

[23] X. Lv, J. Zhao, X. Wang, X. Xu, L. Bai, B. Wang, Novel Bi2O3 nanoporous film fabricated by anodic oxidation and its photoelectrochemical performance, J. Solid State Electrochem., 17 (2013) 1215-1219.

DOI: 10.1007/s10008-012-1996-9

Google Scholar