Oxidation Resistance of Coating Obtained by Innovative Methods for Energy Boilers

Article Preview

Abstract:

The material conception of manufacture nanocomposite coatings with high dispersion phases are presented. The structure surface was obtained by modified technology HVOF aand PMR with micro-jet cooling. The macro and microstructure of composition coatings after the high temperature corrosion test are presented. The oxidation resistance of coatings contain multilayer structure with high dispersion ceramic particles are obtained. The presented coatings use to basic protection to wear and corrosion condition or modified surface of multilayer coatings in the energy boiler.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

152-157

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Szczucka-Lasota B.: High temperature corrosion resistance of new materials for engeenering in power plant, Grant of Higher School of Labor Protection Management, (2009-2011) Poland.

Google Scholar

[2] A. Hernas: Materials and technology for the ultracritical boilers and west combustion, SITPH, Katowice 2009 (in Polish).

Google Scholar

[3] G. Moskal, L. Swadzba, M.; Hetmanczyk, et al. Characterization of microstructure and thermal properties of Gd2Zr2O7-type thermal barrier coating, Journal of the European Ceramic Society 32, 9 (2012) 2025-(2034).

DOI: 10.1016/j.jeurceramsoc.2011.11.043

Google Scholar

[4] Lukaszkowicz K.,. Dobrzanski L. A, Structure and mechanical properties of gradient coatings deposited by PVD techniques onto the X40CrMoV5-1 steel substrate, Journal of Materials Science 43 (2008) 4300-4307.

DOI: 10.1007/s10853-008-2523-3

Google Scholar

[5] D. Janicki, High Power Diode Laser Cladding of Wear Resistant Metal Matrix Composite Coatings, Solid State Phenomena, Mechatronic Systems and Materials V, 199 (2013) 587-592 DOI: 10. 4028/www. scientific. net/SSP. 199. 587.

DOI: 10.4028/www.scientific.net/ssp.199.587

Google Scholar

[6] D. Janicki, Fiber laser welding of nickel based superalloy Inconel 625, Proceedings of SPIE, Laser Technology 2012: Applications of Lasers, 8703 (2013) 87030R DOI: 10. 1117/12. 2013430.

DOI: 10.1117/12.2013430

Google Scholar

[7] D. Janicki, Fiber laser welding of nickel based superalloy Rene 77, Proceedings of SPIE, Laser Technology 2012: Applications of Lasers, 8703 (2013) 87030Q DOI: 10. 1117/12. 2013428.

DOI: 10.1117/12.2013428

Google Scholar

[8] Goral, M.; Swadzba, L.; Moskal, G.; et al. Si-modified aluminide coatings deposited on Ti46Al7Nb alloy by slurry method INTERMETALLICS Volume: 17 Issue: 11, Pages: 965-967,  Published: NOV (2009).

DOI: 10.1016/j.intermet.2009.04.006

Google Scholar

[9] Dobrzanski L.A., Lukaszkowicz K., Kriz A., Properties of the multi-layer Ti/CrN and Ti/TiAlN coatings deposited with the PVD technique onto the brass substrate, Journal of Materials Processing Technology 143-144 (2003) 832-837.

DOI: 10.1016/s0924-0136(03)00351-0

Google Scholar

[10] Lukaszkowicz K.,. Dobrzanski L. A, A. Zarychta, Structure, chemical and phase composition of coatings deposited by reactive magnetron sputtering onto the brass substrate, Journal of Materials Processing Technology 157-158 (2004) 380-387.

DOI: 10.1016/j.jmatprotec.2004.09.059

Google Scholar

[11] Tański T., Characteristics of hard coatings on AZ61 magnesium alloys, Journal of Mechanical Engineering 59/3 (2013) 165-174. DOI: 10. 5545/sv-jme. 2012. 522.

DOI: 10.5545/sv-jme.2012.522

Google Scholar

[12] Tański T., K. Labisz, Electron microscope investigation of PVD coated aluminium alloy surface layer, Solid State Phenomena 186 (2012) 192-197.

DOI: 10.4028/www.scientific.net/ssp.186.192

Google Scholar

[13] L.A. Dobrzański, W. Borek, Thermo-mechanical treatment of Fe-Mn-(Al, Si) TRIP/TWIP steels, Archives of Civil and Mechanical Engineering 12 (3) (2012) 299-304.

DOI: 10.1016/j.acme.2012.06.016

Google Scholar

[14] Grajcar A., W. Borek, The thermo-mechanical processing of high-manganese austenitic TWIP-type steels, Archives of Civil and Mechanical Engineering 8 (4) (2008) 29-38.

DOI: 10.1016/s1644-9665(12)60119-8

Google Scholar

[15] Lisiecki A: Diode laser welding of high yield steel. Proc. of SPIE Vol. 8703, Laser Technology 2012: Applications of Lasers, 87030S (January 22, 2013), DOI: 10. 1117/12. 2013429.

DOI: 10.1117/12.2013429

Google Scholar

[16] .A. Lisiecki : Welding of titanium alloy by Disk laser. Proc. of SPIE Vol. 8703, Laser Technology 2012: Applications of Lasers, 87030T (January 22, 2013), DOI: 10. 1117/12. 2013431.

DOI: 10.1117/12.2013431

Google Scholar

[17] J. Adamiec ; A. Grabowski ; A. Lisiecki; Joining of an Ni-Al alloy by means of laser beam welding. Proc. SPIE 5229, Laser Technology VII: Applications of Lasers, 215, 6, (2003).

DOI: 10.1117/12.520719

Google Scholar

[18] Lukaszkowicz K., Sondor J., Structure, mechanical properties and corrosion resistance of nanocomposite coatings deposited by PVD technology onto the X6CrNiMoTi17-12-2 and X40CrMoV5-1 steel substrates, Journal of Materials Science 45 (2010).

DOI: 10.1007/s10853-009-4140-1

Google Scholar

[19] Goral, M.; Moskal, G.; Swadzba, L. Gas phase aluminizing of TiAl intermetallics. INTERMETALLICS   17, 8(2009) 669-671.

DOI: 10.1016/j.intermet.2009.01.015

Google Scholar

[20] Andrzej Grabowski, Grzegorz Moskal; Laser surface treatment of aluminium matrix composites, Proc. SPIE 8703, Laser Technology 2012: Applications of Lasers, 87030J (January 22, (2013).

DOI: 10.1117/12.2013588

Google Scholar

[21] T Węgrzyn T, Piwnik J, Wieszała, Hadryś D, Control over the steel welding structure parameters by micro-jet cooling, Archives of Metallurgy and Materials, Iss 1, vol 57, 3, (2012), 679-685.

DOI: 10.2478/v10172-012-0073-9

Google Scholar

[22] Wegrzyn T., Piwnik J., Low alloy welding with micro-jet cooling, Archives of Metallurgy and Materials, vol 57, iss 2, (2012).

DOI: 10.2478/v10172-012-0056-x

Google Scholar

[23] T. Wegrzyn, J. Piwnik, D. Hadrys, Oxygen in Steel WMD after Welding with micro-jet cooling, vol 58, iss 4 Archives of Metallurgy and Materials, (2012) 1067-1070.

DOI: 10.2478/amm-2013-0127

Google Scholar

[24] T. Węgrzyn, J. Piwnik, A. Silva, M. Plata, D. Hadryś: Micro-jet technoly in welding, Proc of ISOPE, Anchorage, USA, June 30–July 5, (2013),  178-180.

Google Scholar

[25] Piwnik J, Hadryś D., Skorulski G,.: Plastic properties of  weld after micro-jet cooling ; Journal of Achievements in Material and Manufacturing Engineering, Vol 59, Iss 1, July (2013).

Google Scholar

[26] Węgrzyn T., Piwnik J., Hadryś, D., Acicular ferrite in micro welding technologies, Archives of Metallurgy and Materials, Tom 59, nr 2, (2014).

DOI: 10.2478/amm-2014-0096

Google Scholar