Researches on Fracture Surfaces Electrochemically Charged with Hydrogen

Article Preview

Abstract:

The present paper deals with the morphological alteration of fracture surfaces determined by hydrogen in the case of hydrogen based steels, through electrochemical methods as compared with similar samples of surfaces electrochemically uncharged or with welding deposits created by means of cellulose coated electrodes. Cellulose electrodes allow larger hydrogen quantities to be introduced into the metal deposited during the welding process. Hence, specific fractographic aspects are highlighted in view of interpreting prospective alterations caused by hydrogen based steels (13CrMo4.5 and S235 JR).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

146-151

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Moser, V. Schmidt, Fractography and mechanism of hydrogen cracking – the fisheye concept. 29 (1982), pp.541-554.

Google Scholar

[2] X. C. Ren, Q. J. Zhou, W. Y. Chu, J. in X. Li, Y. J. Su, L.J. Qiao, The mechanism of nucleation of hydrogen blister in metals, Chinese Science Bulletin. 2007, Vol. 52, no. 14, p.2000-(2005).

DOI: 10.1007/s11434-007-0269-y

Google Scholar

[3] K. Vojkovsky, J. Kudlacek, M. Pakosta, M. Krsulja, PCN2 – Cyclic Loading Pulsator for Research on Hydrogen Embrittlement in Surface Treatment Technology, International Conference on Innovative Technologies, IN-TECH 2012, Rijeka, 2012, pp.439-442.

Google Scholar

[4] L. Engel, H. Klingele, An Atlas of Metal Damage. Surface examination by scanning electron microscope, 1981, Carl Hanser Verlag, ISBN 0 7234 0750 9, pp.121-132.

Google Scholar

[5] I. Voiculescu, Hydrogen in steel welded construction, E-Printehc, 2005, ISBN 973-718-181-6, pp.127-135.

Google Scholar

[6] S. Koneti, S. Gokhale, T. Wadsworth, Intergranular Cracking of Oil Field Tubular Components Resulting from the Tempering Process, SPE/IADC Drilling Conference & Exhibition, Amsterdam, The Netherlands, 1-3 March 2011, SPE/IADC 139762.

DOI: 10.2118/139762-ms

Google Scholar

[7] M. Teresa Ferraz, M. Oliveira, Steel fastners failure by hydrogen embrittlement, Ciencia e Tecnologia dos Materiais, Vol. 20, no. ½, 2008, pp.128-133.

Google Scholar

[8] R. Garber, I.M. Bernstein and A.W. Thompson, Hydrogen assisted ductile fracture of spheroidized carbon steels, American society for metals and the metallurgical society of AIME, volume 12A, February 1981, ISSN 0360-2133/81/0211, pp.225-234.

DOI: 10.1007/bf02655195

Google Scholar

[9] H. Cilalone and R.J. Asaro, The role of hydrogen in the ductile fracture of plain carbon steels, American society for metals and the metallurgical society of AIME, volume 10A, March1979, ISSN 0360-2133/79/0312, pp.367-375.

DOI: 10.1007/bf02658347

Google Scholar

[10] V. G. Khanzhin, S. A. Nikulin, V. A. Belov, V. Yu. Turilina, and A. B. Rozhnov, Hydrogen Embrittlement of Steels: II. Effect of Strength, Russian Metallurgy (Metally), Vol. 2013, No. 4, ISSN 0036-0295, p.313–320.

DOI: 10.1134/s0036029513040058

Google Scholar

[11] S. Liu, I.S. Maroef, D.L. Olson, M. Matsushita, Hydrogen management strategies in flux related arc welding, in: Proceedings of the IIW Asian Pacific International Congress, Melbourne, Australia, October 29–November 2, 2000, p.1–12.

Google Scholar

[12] V. Miclosi, Related welding heat treatment through the melting of steels, vol. I, E-Sudura, 2003, Timisoara.

Google Scholar

[13] R.W.K. Honeycombe, H.K.D.H. Bhadeshia, Steels Microstructure and Properties, 2nd Edition, Elwanl Arnold, London, UK, (1995).

Google Scholar

[14] H. Mehrer, Diffusion in solids, ISSN 0171-1873, ISBN 978-3-540-71486-6, E-Springer, Berlin.

Google Scholar

[15] A. Million, C. Million, L'hydrogène dans les aciers et dans les joints soudés, E-Dunod, 1971, Paris.

Google Scholar