Influence of Hot-Working Conditions on a Structure of X11MnSiAl17-1-3 Steel

Article Preview

Abstract:

The investigations are focused on high-manganese austenitic steels used for reinforcing elements of car body. The purpose of this work was to examine the influence of thermo-mechanical treatment workout using Gleeble simulator and LPS module for semi-industrial hot-rolling on the structure and transformations occurring during cold deformations. Thermo-mechanical treatment consists of four passovers with a planned strain rate of about 20%. There were three variants of cooling after thermo-mechanical treatment: cooling in water, natural air-cooling and cooling in water after isothermal holding in the temperature of last deformation 850°C for 30 s. Structural observation were carried on LEICA MEF4A light microscope, analysis of the chemical composition were made with XPert PRO diffractometer, and the results were analyzed with OriginLab. It was found that the high-manganese austenitic X11MnSiAl7-1-3 steel after thermo-mechanical treatment on Gleeble simulator is characterized by dynamically recrystallized structure. In intervals time between each compression metadynamic and static recrystallization take place. After hot-rolling these steels has austenitic structure with dynamically recovered grains and with small metadynamically and statically recrystallized grains that are located on a border of elongated grains of austenite.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

122-127

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Kuziak, R. Kawalla, S. Waengler, Advanced high strength steels for automotive industry, Archives of Civil and Mechanical Engineering 8/2 (2008) 103-117.

DOI: 10.1016/s1644-9665(12)60197-6

Google Scholar

[2] M. Krupinski, L.A. Dobrzanski, J.H. Sokolowski, W. Kasprzak, G. Byczynski, Methodology for automatic control of automotive Al-Si cast components, Materials Science Forum 539-543 (2007) 339-344.

DOI: 10.4028/www.scientific.net/msf.539-543.339

Google Scholar

[3] L.A. Dobrzański, W. Borek, M. Ondrula, Thermo-mechanical processing and microstructure evolution of high-manganese austenitic TRIP-type steels, Journal of of Achievements in Materials and Manufacturing Engineering 53/2 (2012) 9-16.

Google Scholar

[4] W. Ozgowicz, K. Labisz, Analysis of the state of the fine-dispersive precipitations in the structure of high strength steel Weldox 1300 by means of electron diffraction, Journal of Iron and Steel Research, International 18 (2011) 135-142.

Google Scholar

[5] L.A. Dobrzanski, M. Krupinski, K. Labisz, B. Krupinska, A. Grajcar, Phases and structure characteristics of the near eutectic Al-Si-Cu alloy using derivative thermo analysis (Conference Paper), Materials Science Forum 638-642 (2010) 475-480.

DOI: 10.4028/www.scientific.net/msf.638-642.475

Google Scholar

[6] L.A. Dobrzański, W. Borek, Hot-Working Behaviour of Advanced High-Manganese C-Mn-Si-Al Steels, Materials Science Forum 654-656 (2010) 266-269.

DOI: 10.4028/www.scientific.net/msf.654-656.266

Google Scholar

[7] T. Tański, K. Labisz, Electron microscope investigation of PVD coated aluminium alloy surface layer, Solid State Phenomena 186 (2012) 192-197.

DOI: 10.4028/www.scientific.net/ssp.186.192

Google Scholar

[8] T. Tański, K. Lukaszkowicz, Structure and properties of PVD coatings deposited on the aluminium alloys, Surface Engineering 28/8 (2012) 598-604.

DOI: 10.1179/1743294412y.0000000033

Google Scholar

[9] J.A. Jiménez, G. Frommeyer, Analysis of the microstructure evolution during tensile testing at room temperature of high-manganese austenitic steel, Materials Characterization 61 (2010) 221-226.

DOI: 10.1016/j.matchar.2009.11.013

Google Scholar

[10] A. Grajcar, M. Opiela, G. Fojt-Dymara, The influence of hot-working conditions on a structure of high-manganese steel, Archives of Civil and Mechanical Engineering 9/3 (2009) 49-58.

DOI: 10.1016/s1644-9665(12)60217-9

Google Scholar

[11] L.A. Dobrzański, R. Maniara, J. Sokolowski, W. Kasprzak, M. Krupinski, Z. Brytan, Applications of the artificial intelligence methods for modeling of the ACAlSi7Cu alloy crystallization process, Journal of Materials Processing Technology 192 (2007).

DOI: 10.1016/j.jmatprotec.2007.04.022

Google Scholar

[12] T. Tański, Characteristics of hard coatings on AZ61 magnesium alloys, Journal of Mechanical Engineering 59/3 (2013) 165-174.

DOI: 10.5545/sv-jme.2012.522

Google Scholar

[13] L.A. Dobrzanski, T. Tański, Influence of Aluminium Content on Behaviour of Magnesium Cast Alloys in Bentonite Sand Mould, Solid State Phenomena 147-149 (2009) 764-769.

DOI: 10.4028/www.scientific.net/ssp.147-149.764

Google Scholar

[14] L.A. Dobrzański, A. Grajcar, W. Borek, Microstructure evolution of C-Mn-Si-Al-Nb high-manganese steel during the thermomechanical processing, Materials Science Forum 638 (2010) 3224-3229.

DOI: 10.4028/www.scientific.net/msf.638-642.3224

Google Scholar

[15] L.A. Dobrzański, W. Borek, Thermo-mechanical treatment of Fe-Mn-(Al, Si) TRIP/TWIP steels, Archives of Civil and Mechanical Engineering 12 (3) (2012) 299-304.

DOI: 10.1016/j.acme.2012.06.016

Google Scholar

[16] L.A. Dobrzański, W. Borek, Hot-rolling of advanced high-manganese C-Mn-Si-Al steels, Materials Science Forum 706/709 (2012) 2053-(2058).

DOI: 10.4028/www.scientific.net/msf.706-709.2053

Google Scholar

[17] A. Grajcar, W. Borek, The thermo-mechanical processing of high-manganese austenitic TWIP-type steels, Archives of Civil and Mechanical Engineering 8 (4) (2008) 29-38.

DOI: 10.1016/s1644-9665(12)60119-8

Google Scholar

[18] L.A. Dobrzański, W. Sitek, M. Krupiński, J. Dobrzański, Computer aided method for evaluation of failure class of materials working in creep conditions, Journal Of Materials Processing Technology 157 (2004) 102-106.

DOI: 10.1016/j.jmatprotec.2004.09.020

Google Scholar

[19] A. Lisiecki, Diode laser welding of high yield steel. Proc. of SPIE Vol. 8703, Laser Technology 2012: Applications of Lasers, 87030S, DOI: 10. 1117/12. 2013429.

DOI: 10.1117/12.2013429

Google Scholar

[20] L. Blacha, R. Burdzik, A. Smalcerz, T. Matuła, Effects of pressure on the kinetics of manganese evaporation from the OT4 alloy, Archives of Metallurgy and Materials 58 (1) (2013) 197-201.

DOI: 10.2478/v10172-012-0173-6

Google Scholar

[21] S. Boncel, J. Górka, S. Milo, P. Shaffer, K. Koziol, Shear-induced crystallisation of molten isotactic polypropylene within the intertube channels of aligned multi-wall carbon nanotube arrays towards structurally controlled composites, Materials Letters 116 (2014).

DOI: 10.1016/j.matlet.2013.10.084

Google Scholar

[22] D. Janicki, Fiber laser welding of nickel based superalloy Inconel 625, Proceedings of SPIE, Laser Technology 2012: Applications of Lasers, 8703 (2013).

DOI: 10.1117/12.2013430

Google Scholar

[23] W. Sitek, A mathematical model of the hardness of high-speed steels, Transactions of Famena, 34/3 (2010) 39-46.

Google Scholar