High Manganese Austenitic X6MnSiAlNbTi26-3-3 Steel - Characteristic, Structures and Properties

Article Preview

Abstract:

The aim of this paper is to determine the high-manganese austenite propensity to twinning induced by the cold working and its effect on structure and mechanical properties, and especially the strain energy per unit volume of new-developed high-manganese Fe – Mn – (Al, Si) investigated steel with various structures after their thermo-mechanical treatments. The new-developed high-manganese steel provides an extensive potential for automotive industries through exhibiting the twinning induced plasticity (TWIP) and transformation induced plasticity (TRIP) mechanisms. TWIP steels not only show excellent strength, but also have excellent formability due to twinning, thereby leading to excellent combination of strength, ductility, and formability over conventional dual phase steels or transformation induced plasticity TRIP steels. The microstructure evolution in successive stages of deformation was determined in metallographic investigations using light, scanning and transmission electron microscopies as well as X-ray diffraction methods.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

18-23

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.D. Dobrzańska-Danikiewicz, T. Tański, J. Domagała-Dubiel, Unique properties, development perspectives and expected applications of laser treated casting magnesium alloys, Archives of Civil and Mechanical Engineering 12 (2012) 318-326.

DOI: 10.1016/j.acme.2012.06.007

Google Scholar

[2] L.A. Dobrzański, M. Krupiński, K. Labisz, B. Krupińska, A. Grajcar, Phases and structure characteristics of the near eutectic Al-Si-Cu alloy using derivative thermo analysis, Materials Science Forum 638-642 (2010) 475-480.

DOI: 10.4028/www.scientific.net/msf.638-642.475

Google Scholar

[3] L.A. Dobrzański, R. Maniara, J. Sokolowski, W. Kasprzak, M. Krupinski, Z. Brytan, Applications of the artificial intelligence methods for modeling of the ACAlSi7Cu alloy crystallization process, Journal of Materials Processing Technology 192 (2007).

DOI: 10.1016/j.jmatprotec.2007.04.022

Google Scholar

[4] T. Tański, Characteristics of hard coatings on AZ61 magnesium alloys, Journal of Mechanical Engineering 59/3 (2013) 165-174.

DOI: 10.5545/sv-jme.2012.522

Google Scholar

[5] L.A. Dobrzanski, T. Tański, Influence of Aluminium Content on Behaviour of Magnesium Cast Alloys in Bentonite Sand Mould, Solid State Phenomena 147-149 (2009) 764-769.

DOI: 10.4028/www.scientific.net/ssp.147-149.764

Google Scholar

[6] G. Frommeyer, O. Grässel, High strength TRIP/TWIP and superplastic steels: development, properties, application, La Revue de Metallurgie-CIT 10 (1998) 1299-1310.

DOI: 10.1051/metal/199895101299

Google Scholar

[7] G. Frommeyer, U. Brüx, P. Neumann, Supra-ductile and high-strength manganese TRIP/TWIP steels for high energy absorption purposes, ISIJ International 43 (2003) 438-446.

DOI: 10.2355/isijinternational.43.438

Google Scholar

[8] O. Grässel, L. Krüger, G. Frommeyer, L.W. Meyer, High strength Fe-Mn-(Al, Si) TRIP/TWIP steels development - properties - application, International Journal of Plasticity 16 (2000) 1391-1409.

DOI: 10.1016/s0749-6419(00)00015-2

Google Scholar

[9] G. Frommeyer, U. Brüx, Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels, Steel Research 9-10 (2006) 627-633.

DOI: 10.1002/srin.200606440

Google Scholar

[10] U. Brüx, G. Frommeyer, O. Grässel, L.W. Meyer, A. Weise, Development and characterization of high strength impact resistant Fe-Mn-(Al-, Si) TRIP/TWIP steels, Steel Research 73 (2002) 294-298.

DOI: 10.1002/srin.200200211

Google Scholar

[11] J. Kliber, T. Kursa, I. Schindler, The influence of hot rolling on mechanical properties of high-Mn TWIP steels, Proceedings of the 3rd International Conference on Thermo-mechanical Processing of Steels - TMP'2008, Padua, 2008 (CD-ROM).

Google Scholar

[12] O. Kwon, K. Lee, G. Kim, K. Chin, New trends in advanced high strength steel developments for automotive application, Materials Science Forum 638-642 (2010) 136-141.

DOI: 10.4028/www.scientific.net/msf.638-642.136

Google Scholar

[13] Mazancova, E., Schindler, I., Mazanec, K., Stacking fault energy analysis of the high manganese TWIP and TRIPLEX alloys, Hutnicke Listy 3 (2009) 55-58.

Google Scholar

[14] D. Barbier, N. Gey, S. Allain, N. Bozzolo, M. Humbert, Analysis of the tensile behavior of a TWIP steel based on the texture and microstructure evolutions, Materials Science and Engineering A 500 (2009) 196-206.

DOI: 10.1016/j.msea.2008.09.031

Google Scholar

[15] Z. Li, D. Wu, Influence of hot rolling conditions on the mechanical properties of hot rolled TRIP steel, Journal of Wuhan University of Technology - Materials Science Edition 23 (2008) 74-79.

DOI: 10.1007/s11595-006-1074-1

Google Scholar

[16] L.A. Dobrzański, A. Grajcar, W. Borek, Microstructure evolution of C-Mn-Si-Al-Nb high-manganese steel during the thermomechanical processing, Materials Science Forum 638 (2010) 3224-3229.

DOI: 10.4028/www.scientific.net/msf.638-642.3224

Google Scholar

[17] L.A. Dobrzański, W. Borek, Thermo-mechanical treatment of Fe-Mn-(Al, Si) TRIP/TWIP steels, Archives of Civil and Mechanical Engineering 12 (3) (2012) 299-304.

DOI: 10.1016/j.acme.2012.06.016

Google Scholar

[18] L.A. Dobrzański, W. Borek, Hot-rolling of advanced high-manganese C-Mn-Si-Al steels, Materials Science Forum 706/709 (2012) 2053-(2058).

DOI: 10.4028/www.scientific.net/msf.706-709.2053

Google Scholar

[19] L.A. Dobrzański, W. Borek, Hot-Working Behaviour of Advanced High-Manganese C-Mn-Si-Al Steels, Materials Science Forum 654-656 (2010) 266-269.

DOI: 10.4028/www.scientific.net/msf.654-656.266

Google Scholar

[20] A. Grajcar, W. Borek, The thermo-mechanical processing of high-manganese austenitic TWIP-type steels, Archives of Civil and Mechanical Engineering 8 (4) (2008) 29-38.

DOI: 10.1016/s1644-9665(12)60119-8

Google Scholar

[21] A. Grajcar, R. Kuziak, Softening kinetics in Nb-microalloyed TRIP steels with increased Mn content, Advanced Materials Research 314-316 (2011) 119-122.

DOI: 10.4028/www.scientific.net/amr.314-316.119

Google Scholar

[22] A. Grajcar, M. Opiela, G. Fojt-Dymara, G., The influence of hot-working conditions on a structure of high-manganese steel, Archives of Civil and Mechanical Engineering 9 (3) (2009) 49-58.

DOI: 10.1016/s1644-9665(12)60217-9

Google Scholar

[23] M. Opiela, A. Grajcar, Hot deformation behavior and softening kinetics of Ti-V-B microalloyed steels, Archives of Civil and Mechanical Engineering 12 (3) (2012) 327-333.

DOI: 10.1016/j.acme.2012.06.003

Google Scholar

[24] M. Krupinski, L.A. Dobrzanski, J. Sokolowski, W. Kasprzak, G. Byczynski, Methodology for automatic control of automotive Al-Si cast components, Materials Science Forum 539-543 (2007) 339-344.

DOI: 10.4028/www.scientific.net/msf.539-543.339

Google Scholar

[25] L.A. Dobrzanski, W. Sitek, M. Krupinski, J. Dobrzanski, Computer aided method for evaluation of failure class of materials working in creep conditions, Journal Of Materials Processing Technology 157 (2004) 102-106.

DOI: 10.1016/j.jmatprotec.2004.09.020

Google Scholar

[26] W. Ozgowicz, K. Labisz, Analysis of the state of the fine-dispersive precipitations in the structure of high strength steel Weldox 1300 by means of electron diffraction, Journal of Iron and Steel Research International 18/1 (2011) 135-142.

Google Scholar

[27] T. Tański, K. Labisz, Electron microscope investigation of PVD coated aluminium alloy surface layer, Solid State Phenomena 186 (2012) 192-197.

DOI: 10.4028/www.scientific.net/ssp.186.192

Google Scholar

[28] T. Tański, K. Lukaszkowicz, Structure and properties of PVD coatings deposited on the aluminium alloys, Surface Engineering 28/8 (2012) 598-604.

DOI: 10.1179/1743294412y.0000000033

Google Scholar