[1]
J. Nurminen, J. Nakki, P. Vuoristo, Microstructure and properties of hard and wear resistant MMC coatings deposited by laser cladding, Int. Journal of refractory Materials & Hard Materials. 27 (2009) 472-478.
DOI: 10.1016/j.ijrmhm.2008.10.008
Google Scholar
[2]
L. St-Georges, Development and characterization of composite Ni-Cr+WC laser cladding, WEAR. 263 (2007) 562-566.
DOI: 10.1016/j.wear.2007.02.023
Google Scholar
[3]
B. Szczucka-Lasota, B. Formanek, A. Hernas, K. Szymański, Oxidation models of the growth of corrosion products on the intermetallic coatings strengthened by a fine dispersive Al2O3, Journal of Materials Processing Technology, 164-165 (2005).
DOI: 10.1016/j.jmatprotec.2005.02.213
Google Scholar
[4]
S. Zhou, Y. Huang, X. Zeng, Q. Hu, Microstructure characteristics of Ni-based WC composite coatings by laser induction hybrid rapid cladding, Materials Science and Engineering A. 480 (2008) 564-572.
DOI: 10.1016/j.msea.2007.07.058
Google Scholar
[5]
D. Lou, J. Hellman, D. Luhulima, J. Liimatainen, V.K. Lindroos, Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites, Materials Science and Engineering A. 340 (2003) 155-162.
DOI: 10.1016/s0921-5093(02)00173-9
Google Scholar
[6]
B. Szczucka-Lasota, B. Formanek, A. Hernas: Growth of corrosion products on thermally sprayed coatings with FeAl intermetallic phases in aggressive environments, Journal of Materials Processing Technology (2005).
DOI: 10.1016/j.jmatprotec.2005.02.244
Google Scholar
[7]
K. Lukaszkowicz, J. Sondor, A. Kriz, M. Pancielejko, Structure, mechanical properties and corrosion resistance of nanocomposite coatings deposited by PVD technology onto the X6CrNiMoTi17-12-2 and X40CrMoV5-1 steel substrates, Journal of Materials Science 45 (2010).
DOI: 10.1007/s10853-009-4140-1
Google Scholar
[8]
T. Węgrzyn, The influence of nickel and nitrogen on impact toughness properties of low alloy basic electrode steel deposits, Conf. of Inter. Society of Offshore and Polar Engineers ISOPE´2001, Stavanger, VOL IV Book Series: International Offshore and Polar Engineering Conf. Proc. (2001).
Google Scholar
[9]
R. Burdzik, P. Folęga, B. Łazarz, Z. Stanik, J. Warczek, Analysis of the impact of surface layer parameters on wear intensity of friction pairs, Arch. Metall. Mater. 57 (2012) 987-993.
DOI: 10.2478/v10172-012-0110-8
Google Scholar
[10]
M. Opiela, A. Grajcar, Hot deformation behavior and softening kinetics of Ti-V-B microalloyed steels, Arch. Civ. Mech. Eng. 12 (3) (2012) 327-333.
DOI: 10.1016/j.acme.2012.06.003
Google Scholar
[11]
K. Janerka, D. Bartocha, J. Szajnar, J. Jezierski, The carburizer influence on the crystallization process and the microstructure of synthetic cast iron, Arch. Metall. Mater. 55 (3) (2010) 851-859.
DOI: 10.4028/www.scientific.net/amr.629.122
Google Scholar
[12]
A. Lisiecki : Diode laser welding of high yield steel. Proc. of SPIE Vol. 8703, Laser Technology 2012: Applications of Lasers, 87030S (2013), DOI: 10. 1117/12. 2013429.
DOI: 10.1117/12.2013429
Google Scholar
[13]
J. Adamiec, A. Grabowski, A. Lisiecki; Joining of an Ni-Al alloy by means of laser beam welding. Proc. SPIE 5229, Laser Technology VII: Applications of Lasers, 215 (2003).
DOI: 10.1117/12.520719
Google Scholar
[14]
D. Dobrzanska-Danikiewicz, T. Tański, J. Domagala-Dubiel, Unique properties, development perspectives and expected applications of laser treated casting magnesium alloys, Archives Of Civil And Mechanical Engineering 12/3 (2012).
DOI: 10.1016/j.acme.2012.06.007
Google Scholar
[15]
L.A. Dobrzański, K. Labisz, E. Jonda, A. Klimpel, Comparison of the surface alloying of the 32CrMoV12-28 tool steel using TiC and WC powder, J. Mater. Process. Technol. 191 (2007) 321-325.
DOI: 10.1016/j.jmatprotec.2007.03.091
Google Scholar
[16]
A. Lisiecki : Welding of titanium alloy by Disk laser. Proc. of SPIE Vol. 8703, Laser Technology 2012: Applications of Lasers, 87030T (2013), DOI: 10. 1117/12. 2013431.
DOI: 10.1117/12.2013431
Google Scholar
[17]
S. Santhanakrishnan, F. Kong, R. Kovacevic, An experimentally based thermo-kinetic hardening model for high power direct diode laser cladding, Journal of Materials Processing Technology. 211 (2011) 1247-1259.
DOI: 10.1016/j.jmatprotec.2011.02.006
Google Scholar
[18]
D. Janicki, High Power Diode Laser Cladding of Wear Resistant Metal Matrix Composite Coatings, Solid State Phenomena, Mechatronic Systems and Materials V, 199 (2013) 587-592 DOI: 10. 4028/www. scientific. net/SSP. 199. 587.
DOI: 10.4028/www.scientific.net/ssp.199.587
Google Scholar
[19]
T. Tański, K. Labisz, Electron microscope investigation of PVD coated aluminium alloy surface layer, Solid State Phenomena 186 (2012) 192-197.
DOI: 10.4028/www.scientific.net/ssp.186.192
Google Scholar
[20]
A. Klimpel, A. Lisiecki, A. Szymanski, A. P. Hoult, Numerical and experimental determination of weld pool shape during high-power diode laser welding, Proc. of SPIE Vol. 5229, Laser Technology VII: Applications of Lasers, (2003).
DOI: 10.1117/12.520726
Google Scholar
[21]
J. Kusiński et al. Laser modification of the materials surface layer – a review paper. Bulletin of the Polish Academy of Sciences, Technical Sciences 60 no. 4 (2012) 711-728.
DOI: 10.2478/v10175-012-0083-9
Google Scholar
[22]
L. A. Dobrzański, M. Musztyfaga, A. Drygała, Final manufacturing process of front side metallisation on silicon solar cells using convectional and unconventional techniques, Strojnicki Vestnik - Journal of Mechanical Engineering 59 (2013).
DOI: 10.5545/sv-jme.2012.625
Google Scholar