Cladding of Inconel 625+WC Composite Coatings Using a Direct Diode Laser

Article Preview

Abstract:

In the present study, a high power direct diode laser (HPDDL) was used to deposit composite coatings consisted of Ni-based superalloy Inconel 625 matrix and of WC reinforcement particles with a volume fraction of 60%. The influence of parameters, such as laser power beam (heat input) and WC particles size in the cladding powder on the coatings microstructure and erosion wear properties was investigated. The coatings were examined by optical metallography and scanning electron microscopy. The results showed that direct diode laser cladding provides non-porous coatings with homogeneous distribution of WC particles and very low degree of WC dissolution during cladding process. Erosion resistance of the composite coatings decreases with the size of WC particles decreasing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

212-217

Citation:

Online since:

October 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Nurminen, J. Nakki, P. Vuoristo, Microstructure and properties of hard and wear resistant MMC coatings deposited by laser cladding, Int. Journal of refractory Materials & Hard Materials. 27 (2009) 472-478.

DOI: 10.1016/j.ijrmhm.2008.10.008

Google Scholar

[2] L. St-Georges, Development and characterization of composite Ni-Cr+WC laser cladding, WEAR. 263 (2007) 562-566.

DOI: 10.1016/j.wear.2007.02.023

Google Scholar

[3] B. Szczucka-Lasota, B. Formanek, A. Hernas, K. Szymański, Oxidation models of the growth of corrosion products on the intermetallic coatings strengthened by a fine dispersive Al2O3, Journal of Materials Processing Technology, 164-165 (2005).

DOI: 10.1016/j.jmatprotec.2005.02.213

Google Scholar

[4] S. Zhou, Y. Huang, X. Zeng, Q. Hu, Microstructure characteristics of Ni-based WC composite coatings by laser induction hybrid rapid cladding, Materials Science and Engineering A. 480 (2008) 564-572.

DOI: 10.1016/j.msea.2007.07.058

Google Scholar

[5] D. Lou, J. Hellman, D. Luhulima, J. Liimatainen, V.K. Lindroos, Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites, Materials Science and Engineering A. 340 (2003) 155-162.

DOI: 10.1016/s0921-5093(02)00173-9

Google Scholar

[6] B. Szczucka-Lasota, B. Formanek, A. Hernas: Growth of corrosion products on thermally sprayed coatings with FeAl intermetallic phases in aggressive environments, Journal of Materials Processing Technology (2005).

DOI: 10.1016/j.jmatprotec.2005.02.244

Google Scholar

[7] K. Lukaszkowicz, J. Sondor, A. Kriz, M. Pancielejko, Structure, mechanical properties and corrosion resistance of nanocomposite coatings deposited by PVD technology onto the X6CrNiMoTi17-12-2 and X40CrMoV5-1 steel substrates, Journal of Materials Science 45 (2010).

DOI: 10.1007/s10853-009-4140-1

Google Scholar

[8] T. Węgrzyn, The influence of nickel and nitrogen on impact toughness properties of low alloy basic electrode steel deposits, Conf. of Inter. Society of  Offshore and Polar Engineers ISOPE´2001, Stavanger, VOL IV  Book Series: International Offshore and Polar Engineering Conf. Proc.  (2001).

Google Scholar

[9] R. Burdzik, P. Folęga, B. Łazarz, Z. Stanik, J. Warczek, Analysis of the impact of surface layer parameters on wear intensity of friction pairs, Arch. Metall. Mater. 57 (2012) 987-993.

DOI: 10.2478/v10172-012-0110-8

Google Scholar

[10] M. Opiela, A. Grajcar, Hot deformation behavior and softening kinetics of Ti-V-B microalloyed steels, Arch. Civ. Mech. Eng. 12 (3) (2012) 327-333.

DOI: 10.1016/j.acme.2012.06.003

Google Scholar

[11] K. Janerka, D. Bartocha, J. Szajnar, J. Jezierski, The carburizer influence on the crystallization process and the microstructure of synthetic cast iron, Arch. Metall. Mater. 55 (3) (2010) 851-859.

DOI: 10.4028/www.scientific.net/amr.629.122

Google Scholar

[12] A. Lisiecki : Diode laser welding of high yield steel. Proc. of SPIE Vol. 8703, Laser Technology 2012: Applications of Lasers, 87030S (2013), DOI: 10. 1117/12. 2013429.

DOI: 10.1117/12.2013429

Google Scholar

[13] J. Adamiec, A. Grabowski, A. Lisiecki; Joining of an Ni-Al alloy by means of laser beam welding. Proc. SPIE 5229, Laser Technology VII: Applications of Lasers, 215 (2003).

DOI: 10.1117/12.520719

Google Scholar

[14] D. Dobrzanska-Danikiewicz, T. Tański, J. Domagala-Dubiel, Unique properties, development perspectives and expected applications of laser treated casting magnesium alloys, Archives Of Civil And Mechanical Engineering 12/3 (2012).

DOI: 10.1016/j.acme.2012.06.007

Google Scholar

[15] L.A. Dobrzański, K. Labisz, E. Jonda, A. Klimpel, Comparison of the surface alloying of the 32CrMoV12-28 tool steel using TiC and WC powder, J. Mater. Process. Technol. 191 (2007) 321-325.

DOI: 10.1016/j.jmatprotec.2007.03.091

Google Scholar

[16] A. Lisiecki : Welding of titanium alloy by Disk laser. Proc. of SPIE Vol. 8703, Laser Technology 2012: Applications of Lasers, 87030T (2013), DOI: 10. 1117/12. 2013431.

DOI: 10.1117/12.2013431

Google Scholar

[17] S. Santhanakrishnan, F. Kong, R. Kovacevic, An experimentally based thermo-kinetic hardening model for high power direct diode laser cladding, Journal of Materials Processing Technology. 211 (2011) 1247-1259.

DOI: 10.1016/j.jmatprotec.2011.02.006

Google Scholar

[18] D. Janicki, High Power Diode Laser Cladding of Wear Resistant Metal Matrix Composite Coatings, Solid State Phenomena, Mechatronic Systems and Materials V, 199 (2013) 587-592 DOI: 10. 4028/www. scientific. net/SSP. 199. 587.

DOI: 10.4028/www.scientific.net/ssp.199.587

Google Scholar

[19] T. Tański, K. Labisz, Electron microscope investigation of PVD coated aluminium alloy surface layer, Solid State Phenomena 186 (2012) 192-197.

DOI: 10.4028/www.scientific.net/ssp.186.192

Google Scholar

[20] A. Klimpel, A. Lisiecki, A. Szymanski, A. P. Hoult, Numerical and experimental determination of weld pool shape during high-power diode laser welding, Proc. of SPIE Vol. 5229, Laser Technology VII: Applications of Lasers, (2003).

DOI: 10.1117/12.520726

Google Scholar

[21] J. Kusiński et al. Laser modification of the materials surface layer – a review paper. Bulletin of the Polish Academy of Sciences, Technical Sciences 60 no. 4 (2012) 711-728.

DOI: 10.2478/v10175-012-0083-9

Google Scholar

[22] L. A. Dobrzański, M. Musztyfaga, A. Drygała, Final manufacturing process of front side metallisation on silicon solar cells using convectional and unconventional techniques, Strojnicki Vestnik - Journal of Mechanical Engineering 59 (2013).

DOI: 10.5545/sv-jme.2012.625

Google Scholar