[1]
R. Burdzik, Ł. Konieczny, Research on structure, propagation and exposure to general vibration in passenger car for different damping parameters, Journal of Vibroengineering 15 (4) (2013) 1680-1688.
Google Scholar
[2]
J. Mańkowski, J., Osiński, P., Żach, Tension field in thin walled aeronautical girders, Mechanics and Mechanical Engineering 14 (2) (2010) 291-308.
Google Scholar
[3]
A. Grządziela, Ship impact modeling of underwater explosion, Journal of Kones Powertrain and Transport 18 (2) (2011) 145-152.
Google Scholar
[4]
A. Grządziela, Diagnosis of naval gas turbine rotors with the use of vibroacoustic papmeters, Polish Maritime Researches 7 (3) (2000) 14 – 17.
Google Scholar
[5]
A. Lisiecki, Welding of titanium alloy by Disk laser, Proceedings of SPIE, Laser Technology 2012: Applications of Lasers 8703 (2013).
DOI: 10.1117/12.2013431
Google Scholar
[6]
L.A. Dobrzanski, K. Lukaszkowicz, A. Kriz, Properties of the multi-layer Ti/CrN and Ti/TiAlN coatings deposited with the PVD technique onto the brass substrate, Journal of Materials Processing Technology 143-144 (2003) 832-837.
DOI: 10.1016/s0924-0136(03)00351-0
Google Scholar
[7]
J. Marciniak, Biomateriały. Wydawnictwo Politechniki Śląskiej, Gliwice (2013).
Google Scholar
[8]
J. Łabaj, Kinetics of copper evaporation from the Fe-Cu alloys under reduced pressure, Archives of Metallurgy and Materials. 57 (1) (2012) 165–172.
DOI: 10.2478/v10172-012-0005-8
Google Scholar
[9]
R. G. Ward, Evaporative losses during vacuum induction melting of steel, Journal of the Iron and Steel Inst. 201 (1963) 920-923.
Google Scholar
[10]
L. Blacha, Bleientfernung aus kupferlegierungen im prozess der vakuumraffination, Archives of Metallurgy. 48 (1) (2003) 105-127.
Google Scholar
[11]
E. Ozberk, R. Guthrie, Evaluation of vacuum induction melting for copper refining, Transactions of the Institution of Mining and Metallurgy, Section C: Mineral Processing and Extractive Metallurgy. 94 (1985) 146-157.
Google Scholar
[12]
E. Ozberk, R. Guthrie, A kinetic model for the vacuum refining of inductively stirred copper melts. Metallurgical Transactions B. 17 (1) (1986) 87-103.
DOI: 10.1007/bf02670822
Google Scholar
[13]
A. Spitans, E. Jakovics, B. Baake, B. Nacke, Numerical modelling of free surface dynamics of conductive melt in the induction crucible furnace, Magnetohydrodynamics. 46 (2010) 425-436.
DOI: 10.22364/mhd.46.4.12
Google Scholar
[14]
S. Spitans, A. Jakovics, E. Baake, B. Nacke, Numerical modelling of free surface dynamics of melt in an alternate electromagnetic field, Magnetohydrodynamics. 47 (2011), 385-398.
DOI: 10.1007/s11663-015-0515-7
Google Scholar
[15]
S. Golak, R. Przyłucki, The optimization of an inductor position for minimization of a liquid metal free surface, Przeglad Elektrotechniczny (Electrical Review). 84 (11) (2008) 163-164.
Google Scholar
[16]
T. Isawa, H. Nakamura, K. Murakami, Aluminum evaporation from titanium alloys in EB hearth melting process, ISIJ International. 32 (5) (1992) 607-615.
DOI: 10.2355/isijinternational.32.607
Google Scholar
[17]
S. Watakabe, K. Suzuki, K. Nishikawa, Control of chemical compositions of Ti-6Al-4V alloy during melting by electron beam furnace, ISIJ International. 32 (5) (1992) 625-629.
DOI: 10.2355/isijinternational.32.625
Google Scholar
[18]
Y. Su, J. Guo, J. Jia, G. Liu, Y. Liu, Composition control of a TiAl melt during the induction skull melting (ISM) process, Journal of Alloys and Compounds. 334 (2002) 261-266.
DOI: 10.1016/s0925-8388(01)01766-2
Google Scholar
[19]
T. Landig, R. McKoon, M. Young, Electron-beam melting of Ti–6Al–4V, Journal of Vacuum Science Technology. 14 (3) (1977) 808-814.
DOI: 10.1116/1.569272
Google Scholar
[20]
Siwiec G.: The Kinetics of Aluminum Evaporation from the Ti-6Al-4V Alloy, Archives of Metallurgy and Materials 58 (4) (2013) 1155 – 1160.
DOI: 10.2478/amm-2013-0141
Google Scholar
[21]
G. Siwiec, Elimination of Aluminum during the Process of Ti-6Al-4V Alloy, Smelting in a Vacuum Induction Furnace. 57 (4) (2012) 951-956.
DOI: 10.2478/v10172-012-0105-5
Google Scholar
[22]
L. Blacha, J. Mizera, P. Folęga, The effects of mass transfer in the liquid phase on the rate of aluminium evaporation from the Ti-6Al-7Nb alloy, Metalurgija. 53 (1) (2014) 51-54.
Google Scholar