High Power Diode Laser Application for Metals Surface Treatment Based on Wear Resistance Investigation

Article Preview

Abstract:

This paper presents the results of laser remelting influence on structure and properties of the surface of the AlSi9Cu2 aluminium cast alloy as well as X40CrMoV5-1 and 32CrMoV12-28 hot work tool steels, carried out using the high power diode laser (HPDL). Structure changes were determined in the work, especially structure of the surface after wear resistance test. Also hardness investigation of the different remelting areas was performed. The reason of this work was also to determine the laser treatment parameters, particularly the laser power, to achieve a good layer hardness for protection of this constructional and tool materials from losing their work stability and to make the material surface more resistant for work extreme conditions. Tungsten carbide and boron nitride powder was used for alloying. The goal of this work was also to determine technical and technological conditions for remelting the surface layer with HPDL. The remelted layers which were formed on the surface of the investigated aluminium and steels were examined metallographic and analysed using a hardness and wear resistance testers. Key words: Wear resistance, HPDL treatment, aluminium alloys, tool steel, remelting, alloying, surface treatment, boron nitride, tungsten carbide.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

482-489

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Ozgowicz, K. Labisz, Analysis of the state of the fine-dispersive precipitations in the structure of high strength steel Weldox 1300 by means of electron diffraction, Journal of Iron and Steel Research, International 18 (2011) 135-142.

Google Scholar

[2] T. Tański, L.A. Dobrzanski, L. Cizek, L, Influence of heat treatment on structure and properties of the cast magnesium alloys, Advanced Materials Research 15-17 (2007) 491-496 DOI: 10. 4028/www. scientific. net/AMR. 15-17. 491.

DOI: 10.4028/www.scientific.net/amr.15-17.491

Google Scholar

[3] M. Piec, L.A. Dobrzanski, K. Labisz, E. Jonda, A. Klimpel, Laser alloying with WC Ceramic Powder in hot work tool steel using a High Power Diode Laser (HPDL), Advanced Materials Research, 15-17, (2007) 193-198.

DOI: 10.4028/www.scientific.net/amr.15-17.193

Google Scholar

[4] L.A. Dobrzański, M. Bonek, M. Piec. E. Jonda, Diode laser modification of surface gradient layer properties of a hot work- tool steel, Materials Science Forum 532-533 (2006) 657-660.

DOI: 10.4028/www.scientific.net/msf.532-533.657

Google Scholar

[5] L.A. Dobrzański, K. Labisz, E. Jonda, A. Klimpel, Comparison of the surface alloying of the 32CrMoV12-28 tool steel using TiC and WC powder, J. Mater. Process. Technol. 191 1/3, (2007) 321-325.

DOI: 10.1016/j.jmatprotec.2007.03.091

Google Scholar

[6] M. Goral, G. Moskal, L. Swadzba, Gas phase aluminizing of TiAl intermetallics. Intermetallics 17/8 (2009) 669-671.

DOI: 10.1016/j.intermet.2009.01.015

Google Scholar

[7] T. Tański, K. Labisz, Electron microscope investigation of PVD coated aluminium alloy surface layer, Solid State Phenomena 186 (2012) 192-197.

DOI: 10.4028/www.scientific.net/ssp.186.192

Google Scholar

[8] D. Dobrzanska-Danikiewicz, T. Tański, J Domagala-Dubiel, Unique properties, development perspectives and expected applications of laser treated casting magnesium alloys, Archives Of Civil And Mechanical Engineering 12/3 (2012).

DOI: 10.1016/j.acme.2012.06.007

Google Scholar

[9] J. Górka, Analysis of simulated welding thermal cycles S700MC using a thermal imaging camera, Advance Material Research ISI Proceedings 837 (2014) 375-380.

DOI: 10.4028/www.scientific.net/amr.837.375

Google Scholar

[10] A. Lisiecki, Diode laser welding of high yield steel. Proc. of SPIE Vol. 8703, Laser Technology 2012: Applications of Lasers, 87030S (2013), DOI: 10. 1117/12. 2013429.

DOI: 10.1117/12.2013429

Google Scholar

[11] D. Janicki, Fiber laser welding of nickel based superalloy Rene 77, Proceedings of SPIE, Laser Technology 2012: Applications of Lasers, 8703 (2013) 87030Q DOI: 10. 1117/12. 2013428.

DOI: 10.1117/12.2013428

Google Scholar

[12] M. Bilewicz, J.C. Viana, A.M. Cunha, Non-conventional Injection Moulding of a PP/PC-ABS Blend, Trans Tech Publications, Materials Science Forum 514-516, (2006) 858-862.

DOI: 10.4028/www.scientific.net/msf.514-516.858

Google Scholar

[13] A. Lisiecki : Welding of titanium alloy by Disk laser. Proc. of SPIE Vol. 8703, Laser Technology 2012: Applications of Lasers, 87030T (2013), DOI: 10. 1117/12. 2013431.

DOI: 10.1117/12.2013431

Google Scholar

[14] D. Janicki, Fiber laser welding of nickel based superalloy Inconel 625, Proceedings of SPIE, Laser Technology 2012: Applications of Lasers, 8703 (2013) 87030R DOI: 10. 1117/12. 2013430.

DOI: 10.1117/12.2013430

Google Scholar

[15] D. Janicki, High Power Diode Laser Cladding of Wear Resistant Metal Matrix Composite Coatings, Solid State Phenomena, Mechatronic Systems and Materials V, 199 (2013) 587-592 DOI: 10. 4028/www. scientific. net/SSP. 199. 587.

DOI: 10.4028/www.scientific.net/ssp.199.587

Google Scholar

[16] W. Sitek, L.A. Dobrzański, J. Zaclona, The modelling of high-speed steels' properties using neural networks, Journal of Materials Processing Technology 157 (2004) 245-249.

DOI: 10.1016/j.jmatprotec.2004.09.037

Google Scholar

[17] L.A. Dobrzański, A. Grajcar, W. Borek, Microstructure evolution of C-Mn-Si-Al-Nb high-manganese steel during the thermomechanical processing, Materials Science Forum 638 (2010) 3224-3229.

DOI: 10.4028/www.scientific.net/msf.638-642.3224

Google Scholar

[18] A. Grajcar, W. Borek, The thermo-mechanical processing of high-manganese austenitic TWIP-type steels, Archives of Civil and Mechanical Engineering 8 (4) (2008) 29-38.

DOI: 10.1016/s1644-9665(12)60119-8

Google Scholar

[19] T. Tański, Characteristics of hard coatings on AZ61 magnesium alloys, Journal of Mechanical Engineering 59/3 (2013) 165-174. DOI: 10. 5545/sv-jme. 2012. 522.

DOI: 10.5545/sv-jme.2012.522

Google Scholar