[1]
Avi-Itzhak, B.; Naor, P.: Some queueing problems with the server station subject to breakdown. Operations Research 11 (1963), 303-320.
DOI: 10.1287/opre.11.3.303
Google Scholar
[2]
Bratiichuk M. S.; Kempa W. M.: Explicit formulae for queue length of batch arrival systems. Stochastic Models 20 (4) (2004), 457-472.
DOI: 10.1081/stm-200033115
Google Scholar
[3]
Gray, W.J.; Wang, P.P.; Scott, M.K.: A vacation queueing model with server breakdowns. Applied Mathematical Modelling 24 (2000), 391-400.
DOI: 10.1016/s0307-904x(99)00048-7
Google Scholar
[4]
Ke, J. -C.: An M/G/1 queue under hysteretic vacation policy with an early startup and unreliable server. Mathematical Methods of Operations Research 63 (2006), 357-369.
DOI: 10.1007/s00186-005-0046-0
Google Scholar
[5]
Kempa W. M.: The transient analysis of the queue-length distribution in the batch arrival system with N-policy, multiple vacations and setup times. AIP Conference Proceedings 1293 (2010), 235-242.
DOI: 10.1063/1.3515592
Google Scholar
[6]
Kempa W. M.: On main characteristics of the M/M/1/N queue with single and batch arrivals and the queue size controlled by AQM algorithms. Kybernetika 47 (6) (2011), 930-943.
DOI: 10.14736/kyb-2014-1-0126
Google Scholar
[7]
Kempa W. M.: On transient queue-size distribution in the batch arrival system with the N-policy and setup times. Mathematical Communications 17 (2012), 285-302.
Google Scholar
[8]
Kempa W. M.: A direct approach to transient queue-size distribution in a finite-buffer queue with AQM. Applied Mathematics & Information Sciences 7 (3) (2013), 909-915.
DOI: 10.12785/amis/070308
Google Scholar
[9]
Korolyuk, V.S.: Boundary-value problems for complicated Poisson processes. Naukova Dumka, Kiev (1975) (in Russian).
Google Scholar
[10]
Lam, Y.; Zhang, Y.L.; Liu, Q.: A geometric process model for M/M/1 queueing system with a repairable service station. European Journal of Operational Research 168 (2006), 100-121.
DOI: 10.1016/j.ejor.2003.11.033
Google Scholar
[11]
Madan, K.C.: A M/G/1-type queue with time-homgeneous breakdowns and deterministic repair times. Soochow Journal of Mathematics 29 (1) (2003), 103-110.
Google Scholar
[12]
Neuts, M.F.; Lucantoni, D.M.: A Markovian queue with n servers subject to brekadowns and repairs. Management Science 25 (1979), 849-861.
DOI: 10.1287/mnsc.25.9.849
Google Scholar
[13]
Tikhonenko O.; Kempa W. M.: Queue-size distribution in M/G/1-type system with bounded capacity and packet dropping. Communications in Computer and Information Science 356 (2013), 177-186.
DOI: 10.1007/978-3-642-35980-4_20
Google Scholar
[14]
Wang, K. -H.; Chang, Y. -C.: Cost analysis of a finite M/M/R queueing system with balking, reneging and server breakdowns. Mathematical Methods of Operations Research 56 (2002), 169-180.
DOI: 10.1007/s001860200206
Google Scholar