[1]
J.S. Dai, T. Zhao, C. Nester, Sprained ankle physiotherapy based mechanism synthesis and stiffness analysis of a robotic rehabilitation device, Autonomous Robots 16 (2004), 207-218.
DOI: 10.1023/b:auro.0000016866.80026.d7
Google Scholar
[2]
R. Jiménéz-Fabian, O. Verlinden, Review of control algorithms for robotic ankle systems in lower-limb orthoses, prosthese, and exoskeletons, Medical Engineering& Physics 34 (2012), 397-408.
DOI: 10.1016/j.medengphy.2011.11.018
Google Scholar
[3]
J. Yoon, J. Ryu and K.B. Lim, A novel reconfigurable ankle rehabilitation robot for various exercises, Robotics and Automation (2005), 2290-2295.
Google Scholar
[4]
P. K. Jamwal, S. Xie, K. C. Aw, Kinematic design optimization of a parallel ankle rehabilitation robot using modified genetic algorithm, Robotics and Autonomous Systems 57 (2009), 1018- 1027.
DOI: 10.1016/j.robot.2009.07.017
Google Scholar
[5]
M. Girone, G. Burdea, M. Bouzit, V. Popescu J.E. Deutsch, A Stewart platform-based system for ankle telerehabilitation, Autonomous Robots 10 (2001), 203-212.
DOI: 10.1023/a:1008938121020
Google Scholar
[6]
R.F. Boisan, C.S. Lee, J.E. Deutsch, G.C. Burdea, J.A. Lewis, Virtual reality-based system for ankle rehabilitation post stroke, Proc. 1st Int. Workshop Virtual Reality Rehabilitation (2002) 77-86.
DOI: 10.1109/iwvr.2006.1707542
Google Scholar
[7]
M. Girone, G. Burdea, M. Bouzit, U.S. Patent 6, 162, 189 (2000).
Google Scholar
[8]
P.K. Jamwal, S.Q. Xie, Y.H. Tsoi, K.C. Aw, Forward kinematics modelling of a parallel ankle rehabilitation robot using modified fuzzy inference, Mechanism and Machine Theory 45 (2010), 1537- 1554.
DOI: 10.1016/j.mechmachtheory.2010.06.017
Google Scholar
[9]
S.M.M. Rahman, R. Ikeura, A novel variable impedance compact compliant ankle robot for overgroud gait rehabilitation and assistance, Procedia Engineering 41 (2012), 522-531.
DOI: 10.1016/j.proeng.2012.07.207
Google Scholar
[10]
J.W. Wheeler, An ankle robot for a modular gait rehabilitation system, IEEE/RSJ International Conference, vol. 2 (2004), 1680-1684.
Google Scholar
[11]
S. Pittaccio, S. Viscuso, An EMG- Controlled SMA device for the rehabilitation of the ankle joint in post-acute stroke, Journal of materials engineering and performance 20 (2011), 666-670.
DOI: 10.1007/s11665-010-9826-7
Google Scholar
[12]
D.P. Ferris K.E. Gordon, G.S. Sawicki,A. Peethambaran, An improved powered ankle-foot orthosis using proportional myoelectric control, Gait& Posture 23 (2006), 425-428.
DOI: 10.1016/j.gaitpost.2005.05.004
Google Scholar
[13]
A. Cullell, J.C. Moreno,E. Rocon,A. Forner-Cordero, J.L. Pons, Biologically based design of an actuator system for a knee-ankle-foot orthosis, Mechanism and Machine Theory 44 (2009), 860-872.
DOI: 10.1016/j.mechmachtheory.2008.04.001
Google Scholar
[14]
I.M. Babes (Petre), I. Deaconescu, Research concerning pneumatic muscle actuated rehabilitation equipment of bearing joints, dissertation, , Transilvania" University, Brasov, (2012).
Google Scholar
[15]
A. Agrawal, S. K. Banala, S. K. Agrawal, S.A. Binder –Macleod, Design of a two degree-of-freedom ankle-foot orthosis for robotic rehabilitation, International Conference on Rehabilitation Robotics 9, 2005, 41-44.
DOI: 10.1109/icorr.2005.1501047
Google Scholar
[16]
A. Patar, N. Jamlus, K. Makhtar, J. Mahmud, T. Komeda, Development of dynamic ankle foot orthosis for therapeutic application, Procedia Engineering 41 (2012), 1432-1440.
DOI: 10.1016/j.proeng.2012.07.332
Google Scholar
[17]
H. Lee, P. Ho, M. A. Rastgaar, H.I. Kregbs,N. Hogan, Multivariable static ankle mechanical impedance with relaxed muscles, Journal of Biomechanics 44 (2011), 1901-(1908).
DOI: 10.1016/j.jbiomech.2011.04.028
Google Scholar
[18]
S. Au, M. Berniker, H. Herr, Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits, Neural Networks 21 (2008), 654-666.
DOI: 10.1016/j.neunet.2008.03.006
Google Scholar
[19]
H. Kazerooni J.L. Racine,L. Huang, R. Steger, On the control of the Berkeley lower extremity exoskeleton (BLEEX), International Conference on Robotics and Automation, 2005, 4353-4360.
DOI: 10.1109/robot.2005.1570790
Google Scholar
[20]
H. Yu, S. Huang, H. Chen, N. Thakor, Control design of a novel compliant actuator for rehabilitation robots, Mechatronics 23 (2013), 1072-1083.
DOI: 10.1016/j.mechatronics.2013.08.004
Google Scholar
[21]
S.K. Banala, S. Hun Kim, S.K. Agrawal, J.P. Scholz, Robot assisted gait training with active leg exoskeleton (ALEX), Neural Systems and Rehabilitation Engineering , vol 1 (2009), 2-8.
DOI: 10.1109/tnsre.2008.2008280
Google Scholar
[22]
J.F. Venema, R. Kruidof, E.E.G. Hekman, R. Ekkelenkamp, E.H.F. Van Asseldonk, H. van der Hooij, Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation, Neural Systems and Rehabilitation Engineering , no 3 (2007).
DOI: 10.1109/tnsre.2007.903919
Google Scholar