An Overview on Ankle Rehabilitation Devices

Article Preview

Abstract:

People with walking disorders, due accidents or stroke, can be treated to regain their mobility. Conventional therapy is laborious and time consuming. Therefore a new tendency was born, to facilitate the rehabilitation and to reduce time spent on the machines. Rehabilitation robotics is a field in continuous expansion and recently novel mechanisms have been designed to help humans to regain their mobility. In this paper a short overview of ankle recovery systems is presented.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

781-786

Citation:

Online since:

October 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.S. Dai, T. Zhao, C. Nester, Sprained ankle physiotherapy based mechanism synthesis and stiffness analysis of a robotic rehabilitation device, Autonomous Robots 16 (2004), 207-218.

DOI: 10.1023/b:auro.0000016866.80026.d7

Google Scholar

[2] R. Jiménéz-Fabian, O. Verlinden, Review of control algorithms for robotic ankle systems in lower-limb orthoses, prosthese, and exoskeletons, Medical Engineering& Physics 34 (2012), 397-408.

DOI: 10.1016/j.medengphy.2011.11.018

Google Scholar

[3] J. Yoon, J. Ryu and K.B. Lim, A novel reconfigurable ankle rehabilitation robot for various exercises, Robotics and Automation (2005), 2290-2295.

Google Scholar

[4] P. K. Jamwal, S. Xie, K. C. Aw, Kinematic design optimization of a parallel ankle rehabilitation robot using modified genetic algorithm, Robotics and Autonomous Systems 57 (2009), 1018- 1027.

DOI: 10.1016/j.robot.2009.07.017

Google Scholar

[5] M. Girone, G. Burdea, M. Bouzit, V. Popescu J.E. Deutsch, A Stewart platform-based system for ankle telerehabilitation, Autonomous Robots 10 (2001), 203-212.

DOI: 10.1023/a:1008938121020

Google Scholar

[6] R.F. Boisan, C.S. Lee, J.E. Deutsch, G.C. Burdea, J.A. Lewis, Virtual reality-based system for ankle rehabilitation post stroke, Proc. 1st Int. Workshop Virtual Reality Rehabilitation (2002) 77-86.

DOI: 10.1109/iwvr.2006.1707542

Google Scholar

[7] M. Girone, G. Burdea, M. Bouzit, U.S. Patent 6, 162, 189 (2000).

Google Scholar

[8] P.K. Jamwal, S.Q. Xie, Y.H. Tsoi, K.C. Aw, Forward kinematics modelling of a parallel ankle rehabilitation robot using modified fuzzy inference, Mechanism and Machine Theory 45 (2010), 1537- 1554.

DOI: 10.1016/j.mechmachtheory.2010.06.017

Google Scholar

[9] S.M.M. Rahman, R. Ikeura, A novel variable impedance compact compliant ankle robot for overgroud gait rehabilitation and assistance, Procedia Engineering 41 (2012), 522-531.

DOI: 10.1016/j.proeng.2012.07.207

Google Scholar

[10] J.W. Wheeler, An ankle robot for a modular gait rehabilitation system, IEEE/RSJ International Conference, vol. 2 (2004), 1680-1684.

Google Scholar

[11] S. Pittaccio, S. Viscuso, An EMG- Controlled SMA device for the rehabilitation of the ankle joint in post-acute stroke, Journal of materials engineering and performance 20 (2011), 666-670.

DOI: 10.1007/s11665-010-9826-7

Google Scholar

[12] D.P. Ferris K.E. Gordon, G.S. Sawicki,A. Peethambaran, An improved powered ankle-foot orthosis using proportional myoelectric control, Gait& Posture 23 (2006), 425-428.

DOI: 10.1016/j.gaitpost.2005.05.004

Google Scholar

[13] A. Cullell, J.C. Moreno,E. Rocon,A. Forner-Cordero, J.L. Pons, Biologically based design of an actuator system for a knee-ankle-foot orthosis, Mechanism and Machine Theory 44 (2009), 860-872.

DOI: 10.1016/j.mechmachtheory.2008.04.001

Google Scholar

[14] I.M. Babes (Petre), I. Deaconescu, Research concerning pneumatic muscle actuated rehabilitation equipment of bearing joints, dissertation, , Transilvania" University, Brasov, (2012).

Google Scholar

[15] A. Agrawal, S. K. Banala, S. K. Agrawal, S.A. Binder –Macleod, Design of a two degree-of-freedom ankle-foot orthosis for robotic rehabilitation, International Conference on Rehabilitation Robotics 9, 2005, 41-44.

DOI: 10.1109/icorr.2005.1501047

Google Scholar

[16] A. Patar, N. Jamlus, K. Makhtar, J. Mahmud, T. Komeda, Development of dynamic ankle foot orthosis for therapeutic application, Procedia Engineering 41 (2012), 1432-1440.

DOI: 10.1016/j.proeng.2012.07.332

Google Scholar

[17] H. Lee, P. Ho, M. A. Rastgaar, H.I. Kregbs,N. Hogan, Multivariable static ankle mechanical impedance with relaxed muscles, Journal of Biomechanics 44 (2011), 1901-(1908).

DOI: 10.1016/j.jbiomech.2011.04.028

Google Scholar

[18] S. Au, M. Berniker, H. Herr, Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits, Neural Networks 21 (2008), 654-666.

DOI: 10.1016/j.neunet.2008.03.006

Google Scholar

[19] H. Kazerooni J.L. Racine,L. Huang, R. Steger, On the control of the Berkeley lower extremity exoskeleton (BLEEX), International Conference on Robotics and Automation, 2005, 4353-4360.

DOI: 10.1109/robot.2005.1570790

Google Scholar

[20] H. Yu, S. Huang, H. Chen, N. Thakor, Control design of a novel compliant actuator for rehabilitation robots, Mechatronics 23 (2013), 1072-1083.

DOI: 10.1016/j.mechatronics.2013.08.004

Google Scholar

[21] S.K. Banala, S. Hun Kim, S.K. Agrawal, J.P. Scholz, Robot assisted gait training with active leg exoskeleton (ALEX), Neural Systems and Rehabilitation Engineering , vol 1 (2009), 2-8.

DOI: 10.1109/tnsre.2008.2008280

Google Scholar

[22] J.F. Venema, R. Kruidof, E.E.G. Hekman, R. Ekkelenkamp, E.H.F. Van Asseldonk, H. van der Hooij, Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation, Neural Systems and Rehabilitation Engineering , no 3 (2007).

DOI: 10.1109/tnsre.2007.903919

Google Scholar