[1]
K. Kalinowski, C. Grabowik, W. Kempa, I. Paprocka, The graph representation of multivariant and complex processes for production scheduling. Advanced Materials Research, Vol. 837 1662-8985 (2014), pp.422-427.
DOI: 10.4028/www.scientific.net/amr.837.422
Google Scholar
[2]
K. Kalinowski, C. Grabowik, I. Paprocka, W. Kempa, The model of discrete production scheduling system in UML notation - classes diagrams. Advanced Materials Research, Vol. 837 1662-8985 (2014), pp.416-421.
DOI: 10.4028/www.scientific.net/amr.837.416
Google Scholar
[3]
C. Grabowik, K. Kalinowski, Object-oriented models in an integration of CAD/CAPP/CAP systems. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6679 LNAI (PART 2), (2011).
DOI: 10.1007/978-3-642-21222-2_49
Google Scholar
[4]
K. Kalinowski, D. Krenczyk, C. Grabowik, Predictive-reactive strategy for real time scheduling of manufacturing systems. Applied Mechanics and Materials, Vol. 307 (2013), pp.470-473.
DOI: 10.4028/www.scientific.net/amm.307.470
Google Scholar
[5]
K. Kalinowski, Multistage decision making process of multicriteria production scheduling. Journal of Machine Engineering, Vol. 12 no. 3 (2012), pp.20-33.
Google Scholar
[6]
G. Ćwikła, Real-time monitoring station for production systems. Advanced Materials Research, Vol. 837 (2014), pp.334-339.
DOI: 10.4028/www.scientific.net/amr.837.334
Google Scholar
[7]
A. Dymarek, T. Dzitkowski, Passive reduction of system vibrations to the desired amplitude value, Journal of Vibroengineering. 15/3 (2013), pp.1254-1264.
Google Scholar
[8]
S. Zolkiewski, Numerical Application for Dynamical Analysis of Rod and Beam Systems in Transportation. Solid State Phenomena Vol. 164 (2010), pp.343-348.
DOI: 10.4028/www.scientific.net/ssp.164.343
Google Scholar
[9]
M. Hetmańczyk, P. Michalski: The aid of a mistake proofing with the use of mechatronic systems according to the Poka-Yoke methodology, Advanced Materials Research, vol. 837 (2014), pp.399-404.
DOI: 10.4028/www.scientific.net/amr.837.399
Google Scholar
[10]
Beltz R., Mertens P.: Combining knowledge-based systems and simulation to solve a rescheduling problem. Decision Support Systems, vol. 17 (1996), p.141–157.
DOI: 10.1016/0167-9236(95)00029-1
Google Scholar
[11]
Akturk M.S., Gorgulu E.: Match-up Scheduling under a Machine Breakdown. Theory and Methodology. European Journal of Operational Research, vol. 112 (1999), p.81–97.
DOI: 10.1016/s0377-2217(97)00396-2
Google Scholar
[12]
Church L.K., Uzsoy R.: Analysis of periodic and event-driven rescheduling policies in dynamic shops. International Journal of Computer Integrated Manufacturing, vol. 5, (1992), p.153–163.
DOI: 10.1080/09511929208944524
Google Scholar
[13]
Rangsaritratsamee R., Ferrell Jr. W.G., Kurz M.B.: Dynamic rescheduling that simultaneously considers efficiency and stability. Computers & Industrial Engineering, vol. 46 (2004), p.1–15.
DOI: 10.1016/j.cie.2003.09.007
Google Scholar
[14]
Guo B., Nonaka Y.: Rescheduling and optimization of schedules considering machine failures. International Journal of Production Economics, vol. 60–61 (1999), p.503–513.
DOI: 10.1016/s0925-5273(98)00155-8
Google Scholar
[15]
Mital A., Anand S.: Handbook of Expert Systems Applications in Manufacturing Structures and Rules. Chapman & Hall, London (1994).
Google Scholar
[16]
Thomas D.W.: Integration Strategies for the Reactive Scheduling System. NISTIR 6171, National Institute of Standards and Technology, Gaithersburg (1997).
Google Scholar
[17]
Vieira G.E., Herrmann J.W., Lin E.: Rescheduling manufacturing systems: a framework of strategies, policies, and methods. Journal of Scheduling, vol. 6 (2003), p.39–62.
Google Scholar
[18]
Kimms A.: Stability Measures for rolling schedules with applications to capacity expansion planning, master production scheduling and lot sizing. Omega, International Journal Management Science, vol. 26 (1998), no. 3, p.355–366.
DOI: 10.1016/s0305-0483(97)00056-x
Google Scholar